Design of a new Hydrogen Fueled Hybrid Car Prototype
The proposed project involves a new water-fueled hybrid car prototype that integrates various technologies, including photovoltaic (PV) panels, electrolysis, a fuel cell, a metal hydride tank, and a battery. The car is equipped with PV panels on its surface, such as the roof or hood, which convert solar energy into electricity. This electricity powers a DC motor that propels the vehicle. Excess electricity can be stored in a battery or used in an electrolysis system to split water into hydrogen and oxygen. The hydrogen is stored in a metal hydride tank for later use. Metal hydrides are materials capable of absorbing and releasing hydrogen gas, providing a safe and compact storage solution. The fuel cell converts hydrogen into electricity to power the DC motor when sunlight is not available. This hybrid system allows for direct solar-powered operation while also storing excess energy as hydrogen. Experimental tests were conducted on a prototype of this water-fueled car, with the fuel cell serving as a backup power source to ensure continuous operation even without solar energy. This concept offers several advantages, including the use of renewable solar energy, zero emissions during fuel cell operation, and the ability to store and utilize excess energy.
Resolving the Phosphate Fertilizer Dilemma through Progressive Wastewater Treatment
The study aimed to resolve global phosphate scarcity by developing a cost-effective method for phosphorus recovery from industrial wastewater. In existing wastewater treatment, oxidizing phosphite ions (PHO32-) posed a significant challenge. However, our research aimed to develop an effective method for this oxidation process, crucial for phosphorus recovery in industrial wastewater treatment. By utilizing low-cost iron compounds and innovative catalysts, such as iodine obtained from seawater and copper, we achieved remarkable success. Our method demonstrated the ability to oxidize over 80% of PHO32- into phosphate ions (PO43-) within 120 minutes, overcoming the limitations of existing costly methods involving palladium catalysts or high-voltage conditioned ozone (O3). Moreover, the process exhibited profitability, with a gross profit of $1.84 per kilogram of phosphorus, presenting a drastic reduction in cost compared to conventional methods using palladium catalysts. This breakthrough not only offers sustainable wastewater purification but also promises a pathway for resource recovery. Additionally, our future prospects involve refining this method into a device capable of purifying industrial wastewater and recovering phosphorus, emphasizing sustainability and reduced power consumption through innovative techniques like using iron and carbon plates forming a battery. This novel technology represents a sustainable solution utilizing abundant resources such as iodine from seawater, iron, and calcium, paving the way for sustainable phosphorus resource recovery.