全國中小學科展

2024年

格子點的可見性研究

本文的主要結果有兩部分,第一部分,對於固定的𝑏 ∈ 𝑁以原點 O為觀測點,𝑓(𝑥) = 𝑎𝑥𝑏, 𝑎 ∈ 𝑄為觀測視線,觀測目標為格子點陣列𝑉(𝑚) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚 },研究其中可見點的數量與機率。我們發現可見點的數量與歐拉函數及默比烏斯函數有關,可見點的機率也與黎曼𝑧𝑒𝑡𝑎函數具有關聯性。第二部分,對於固定的𝑏 ∈ 𝑁,我們在 𝑥軸與𝑦 軸上布置觀測點,以布置的觀測點為新原點,𝑓(𝑥) = 𝑎𝑥𝑏, 𝑎 ∈ 𝑄為觀測視線,研究將目標點集𝑉(𝑚 × 𝑛) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑚}完整觀測的布點方法與數量。得到重要成果如下,設正整數𝑚 ≥ 6且𝑇 ⊂ {1, … , 𝑚 + 1}為一個 𝐹(𝑚) −覆蓋,𝑟為大於𝑚的最小質數,對於目標點集𝑉(𝑚 × 𝑛),建構觀測點集 𝑆2 = {(0, 0), (0, 𝑟)}∪{(𝑡, 0) | 𝑡 ∈ 𝑇},則 𝑉(𝑚 × 𝑛)為𝑆2 −可見。並進一步研究將目標點集改為𝑉(𝑛 × 𝑚) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑗 ≤ 𝑚},發現其所需要的觀測點數可顯著減少。

Breaking a Caesar Cipher / Vigenère Cipher Encryption for Secure Data Communication

This project had one purpose: creating almost unbreakable encryption by breaking a Caesar – and Vigenère Cipher and getting familiar with how they work. Created a program to encrypt and decrypt messages with a Caesar Cipher and Vigenère Cipher encryption. Breaking these encryptions in these programs will help to identify the factors that contribute to strong and weak encryption systems. A program was created to encrypt messages using Caesar Cipher with a key from 1 to 25 and decrypt messages without knowing the original key by doing different types of “attacks” on the system: a brute force and frequency analysis attack. Created another program to encrypt messages using Vigenère Cipher with a keyword or keyphrase and decrypted messages whilst knowing that original keyword. Tested and compared the two different cyphers when being attacked. This helped identify factors that influenced the strength of encryption and identified the advantages and disadvantages of each Cipher as well as the weaknesses in each attack. Through testing and breaking a Caesar and Vigenère Cipher successfully, multiple factors were identified that influenced the strength of the encryption system. These were used to ensure the new encryption created will be as strong as can be. Comparing the success rate of the different attacks on each Cipher, the similarities, weaknesses and strengths in the Brute Force and Frequency Analysis attacks were found.

HandExo

Stroke is a very common disease, almost a national disease. In terms of stroke frequency, 匈牙利 ranks second in the world. Every year, 40-50 thousand people become paralyzed or permanently injured as a result of cerebrovascular disorders. This number is three to four times higher than in developed countries. Almost every Hungarian family is affected! Of course, saving the life of someone who has a stroke is the most important thing, but rehabilitation is also very important, since only with the help of a physiotherapist will the patient be able to live a full life.

King's Power - The Utilization of Agricultural Waste in the Production of Sustainable Dry Cells

The idea of dramatically reducing the cost of the production dry cell, reducing its carbon footprint, and being able to be an alternative to current materials such as biochars really propels the interest of performing this project research. Biochars from durian husk, bamboo and coconut shell are promising alternative chemical materials of the anodes in the dry cell due to their eco-friendly traits and availability in the trophic areas which covers about 40% of the land on earth. Using the technique of pyrolysis, the latest and the best technique to produce a high carbon content biochars, the dry cell uses the potassium hydroxide as the electrolyte and manganese dioxide as the catalysts that make the biochar mixture to produce maximum voltage of 65% from the dry cell sold in the current market. The voltage analysis of the biochar dry cell was done in our school science laboratory and then, characterization tests analysis was carried out on the products from the specific biomass namely the SEM/EDX analysis, at the Material Characterization Laboratory (MCL), Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra 馬來西亞. Based on our research, the biochar obtained from the raw materials (Durian Husk, Bamboo and Coconut Shell) had shown different characteristics. The bamboo biochar had shown the most amount of carbon content which is 86.64% more than the durian husk biochar (72.77%) and coconut shell biochar (65.57%). On the other hand, based on the micrograph, we observed that the durian husk biochar had shown much created pores rather than bamboo biochar and coconut shell biochar. In our study, we found out that the average voltage produced by the three different biochars have shown that Durian Husk char dry cell produced the highest voltage which is 0.97V, more than the bamboo char (0.62V) and coconut shell char (0.73V). In conclusion, the biochar dry cell produced are much cheaper in term of its production as our biochar dry cell uses biomass that are freely available and comes from renewable source of energy, the best ingredient for Green Technology.

親疏有別-水滴在親疏交錯界面之運動現象探討

當水滴碰撞親疏交錯界面,直線、弧線及螺線親疏線條決定了水滴鋪展收縮的對稱形態與受力,研究發現水滴有分割、彈跳、移動、旋轉等多樣化運動現象,接著以此基礎提出「水滴移動猜想」並且驗證成功:水滴置於繪有親水弧線道的疏水振動平板上,會因為持續的不對稱鋪展收縮產生了振動-移動現象,且和水滴大小、振幅頻率、親疏線型、平板材質、張力黏度、角度…有關。本研究亦嘗試控制水滴使其產生繞圓周、直角過彎、爬坡下坡等現象,更測試出「懸吊」水滴的振動-移動。最後,針對其形態、受力加以分析,提出模型予以解釋。

以CFD模擬探討熱對流發電裝置之效率

本研究為 111 年度綠色化學創意競賽《熱對流發電裝置之效率研究》之延續性作品,該作品中,我們已得知高度、內外溫度差以及儲氣量對發電效率的影響,因此我們想要進行更深入的研究。 本研究中,有兩個主要的研究方向,分別是管路材質以及風扇數量對熱對流發電裝置之風速影響。本實驗使用AnsysFluent 軟體進行CFD 模擬,在模擬結果中,我們發現鐵管相對於PVC 管,能使流速提高。風扇數量的增加,也會使流速提高,進而推測可使發電效率增加。 我們也希望能開發綠能智慧路燈、模擬導流板對流速的影響以及風扇葉片轉動的效率,讓整個研究更完備。

Observation of volcanic gases with a simple alkaline filter paper method at Sakurajima Volcano in Kagoshima, Japan.

There are many active volcanoes in Kagoshima Prefecture, including Sakurajima Volcano. So, the volcanic disaster prevention is an urgent issue. Also, Hirabayashi of Tokyo Institute of Technology reported that the molar ratio of HCl/SO2 is large during periods of high HCl/SO2 and conversely small during periods of low HCl/SO2 , and that explosions increase one month after the molar ratio of HCl/SO2 increases during periods of no explosions. We decided to determine the composition ratio of volcanic gases (sulfur dioxide, hydrogen chloride, and hydrogen fluoride) emitted from Sakurajima crater in order to understand and predict volcanic activities. Th us, we established a simple collection method for volcanic gases using alkaline filter paper and a quantitative method using a self m ade absorbance photometer so that even high school students could perform the measurement at many points, and we discussed the data from various perspectives. Furthermore, since last year, we have found a correlation between the variation of Cl-/SO2 ratio and the number of eruptions at Sakurajima volcano. Also, a model for the behavior of volcanic gases was developed based on a comparison of the amount of volcanic ash and the number of eruptions.

以LoRa物聯網通訊技術及去中心化網狀網路構建緊急救難發報系統

網際網路高速發展時代,為解決身處於無蜂窩訊號涵蓋範圍下,可提供通訊服務及緊急呼叫的手持無線電及衛星服務昂貴不普及,因此本研究採用遠距離、低成本、ISM免執照頻段的LoRa物聯網無線電技術,透過其啁啾調頻技術(Chirp Spread Spectrum)、高鏈路預算等優勢,以「人人皆為基地台,亦為客戶端」理念,設計P2P去中心化網狀網路(Mesh Net work)節點傳輸協定和低廉可負擔的通訊裝置,應用於SOS緊急救難呼叫、短文通訊、定位回報等。在固有網路系統不可用時也得以獨立組網,無須高昂的修建維護成本。也可透過搜救無人機、高空氣球等,快速部署Gateway於高山極地、無訊號區、第三世界國家等情境場所,促進人類福祉達成聯合國SDGs永續理念,未來將技術結合低軌道衛星,較其他衛星技術更經濟、環保,並覆蓋全球範圍達成無死角通訊。

利用震源回歸建立斷層面

為降低鑽探所耗費的資源,我們發現可透過震源回歸板塊隱沒帶,萌生出運用地震震源計算斷層平面的方法,因此我們用「2018/02/08 吉安地震」、「2022/09/17 關山地震」、「2022/09/18 池上地震」、「2022/09/18 富里地震」、「2022/06/25 光復地震」、「2018/02/06 花蓮地震」、「2022/02/04 峨嵋地震」、「2022/02/04 新城地震」這 8 個地震為參考資料,並使用 Python 中的LinearRegression 函數建立線性迴歸模型以及使用 fit 函數對模型進行訓練,最後 3D 列印出花東縱谷與中央山脈斷層的差異。可發現兩地區斷層皆為南北走向,花東縱谷斷層的傾角為東傾 69-54 度,而中央山脈斷層則為西傾 60 度左右。

恆星磁場的觀測與分析計算–主序星磁場的規律

恆星磁場是影響恆星活動的主要因素之一,可藉由光譜上的磁分裂譜線進行量測,近幾年來,由於觀測設備的進步,更高解析力的光譜儀出現,使光譜上的磁分裂譜線更加明顯,更容易對其進行測量。主序星是赫羅圖 (H-Rdiagram) 上最具規律的恆星類型,其各種物理量間大多可以簡單的線性關係表示,因此本研究專注於研究主序帶上各種表面溫度的恆星之磁場大小。本研究透過 Python 計算 Lamost 資料庫中主序星光譜的磁分裂譜線波長差,再透過Phoenix 資料庫庫中的恆星標準光譜與 AtomicspectrallinedatabasefromCD-ROM23ofR. L. Kurucz.找出該分裂譜線是由何種元素造成的,並計算出該分裂譜線的朗德 g 因子 (Landég factor),以此計算出主序帶上表面溫度 3300K~8000K 的恆星之磁場大小。並透過各種次方的多項式對觀測數據的平滑曲線進行擬合,以及結合現有的恆星標準模型,找出最能描述恆星磁場大小與表面溫度之關係的多項式。