AGRIBOT – ROBOTIC SOLUTION TO FOOD SUSTAINABILITY
Food sustainability is key to human survival. Robotic solutions have started playing large roles in automating farming tasks in order to assist with crop yield and the efficiency of production. Due to the unreliability of and lack of manual labour in many parts of the world, Agribots are playing bigger roles. One of the biggest advantages of Agribots is that they can operate 24/7, 365 days a year without payment. Agribots are being used more often in dairy farms to milk cows while others are used to shear sheep. Agribots are fast becoming very important to farmers by gathering valuable data; milking cows; automating animal feed; measuring the right amount of pest control, detecting weeds and pests, harvesting and ploughing with unmanned tractors. In many parts of the world farm labour is scarce and difficult to come by. In 南非 for example farm labourers endure gruesome attacks. These attacks on farmers result in the closure of the farm for an extended period of time resulting in the loss of large quantities of crops. Food sustainability is dire in Africa and many parts of the world. “Each day, 25,000 people, including more than 10,000 children, die from hunger and related causes. Some 854 million people worldwide are estimated to be undernourished, and high food prices may drive another 100 million into poverty and hunger. . 90 percent of the world’s farms produce over 80 percent of the world’s food. They also manage about 75 percent of farmland worldwide. Yet, paradoxically, these farmers are often poor and food insecure themselves. Due to the increase in the world’s population annually, there is a growing demand for food. This has led to increasing pressure on farmers to produce crops. In order to meet this demand, farming innovations are vital for the future of food and agriculture. Constant innovations in agriculture is thus needed to constantly feed a growing and increasing population. Innovation in agriculture is also critical to help farmers use resources in better and more efficient ways. “Innovation is one of our best tools for creating a #ZeroHunger world.
LENS WITH VARIABLE OPTICAL CHARACTERISTICS
Research work on creating a lens, the optical power can be changed depending on human needs. Most people have visual impairments that need to be corrected with surgery or optical devices (glasses and contact lenses). The optical characteristics of the human eye vary depending on age, health, intensity of visual load. We propose to give people the opportunity to smoothly adjust the optical power of the spectacle lens by changing the transparent tubes between the two windows of transparent films. Experimental studies have shown the possibility of adjusting the optical power of the proposed line in a wide range. Existing devices and materials for changing the optical power of the line are analyzed. The design of a lens with variable optical characteristics is proposed, which is created from two window films, the space between which is filled with liquid. Publicly available materials for the outer shell of the lens and liquid for its filling. The effect of the amount of liquid to be filled on the optical power of the lens was experimentally determined. The formula for experimental finding of focal length of a lens is entered. Novelty is impossible because you can use the lens in another field. For example, in the future it is planned to perform an experiment with a lens system to create, for example, a telescope.
Detect the Defect
"When the Well is Dry, we will know the Worth of Water." Most of 埃及 and the world suffers from water and petrol shortage. With the current consumption rate, two-thirds of the world's population may face water shortages by 2025. These are water pollution, overpopulation, and agriculture, leading to wastewater from landfills and pipes that seep into the ground and may pollute the water, making it unfit for human consumption and waste more water. Besides, some accidents happen to water distribution and irrigation systems, causing a significant loss in water. According to the ministry of water resources, in 2016, the need for freshwater is 67 billion cubic meters. On the other hand, 埃及 receives only 55 billion cubic meters (2.6 billion cubic meters of them evaporate during runoff). Also, one of the wasting water methods in modern irrigation systems is water leakage from pipes as the water transmission and distribution lose about 31% of the produced water due to pipe leakage. Besides, every day more than 3.3 billion liters of treated water – 20 percent of the nation's supply and 234 million liters a day more than a decade ago – are lost through leaking pipes in England and Wales. Many reasons lead to leakage in pipes like water pressure, clogs, and corrosion. The leakage in pipes does not exist in the lines of water only. Also, the pipes in a petrol can cause dangerous accidents like the accident in the Bahira government that led to the death of 6 people and made 19 in a dangerous state. Our project designed a system that can detect fluid leakage and deal with it fast to prevent the wasting of fluid by using sensors and electronic circuits. Our system provides us with information about the fluid (like the amount of the flowing fluid and its speed). Therefore, if there is a difference in the reads, we understand that there is a leakage in this region, and the system will automatically stop the fluid flowing through the pipes. the system will locate all the leakage sites and send them to the mobile app with the amount wasted and the actions taken.
THE DESIGN OF MICROFLUIDIC PUMP (MFP) FOR MEDICAL FIELD
The ability of microfluidic (MF) device technologies to provide a lot of information with a small amount of sample, the opportunities it offers increases their use in the medical field in the bedside monitoring in drug delivery systems. Three-dimensional (3D) printer technologies provide advantages such as cost-effectiveness in the production of MF devices and quick and easy production in intricate designs. In our project, it is aimed to design microfluidic pumps (MFP) to be used in the medical field and conduct its production with 3D printer technologies. The developed MFP is intended to be at low cost, bio-compatible, adaptable, and portable to the drug, suitable flow properties as a pharmaceutical pump. First of all, MFP air channel, flow channel, etc. parts were designed and printed with the help of a 3D printer and on AutoCAD, one of the professional drawing programs. The poly(dimethylsiloxane) (PDMS) membrane that will enable MFP activation is produced in different thicknesses and glued to the air channel of MFP. The resistance to the applied pressure is observed, and the appropriate membrane thickness is determined as ~ 235µm. Liquid PDMS was applied to the inner surfaces of MFP's air and flow channel, PDMS membrane was placed between them, and the parts were assembled in the oven at 60ºC. MFP has been connected to the pneumatic valve system, where operation codes have been prepared with Arduino Uno, and flow properties have been examined. The flow rate of MFP is ~ 50 µL/min at a maximum of 15 Hz, and the backpressure is ~ 0.085 Pa under a maximum pressure of 3 bar. Also, values such as size, membrane thickness, and applied pressure for the possible models of MFP were supported by theoretical calculations. As a result, MFP, which is biocompatible, drug adaptable, portable, wearable technology application potential, and has suitable flow characteristics as a pharmaceutical pump, has been developed. MFP introduced a microfluidic pump system that can make life easier for the patient and contribute to the national economy through domestic production and can be used as a drug pump in the treatment of diseases such as diabetes and cancer.
Hydrogen Functionalization of Graphene using RF Plasma for photodetection
The growth of the internet is propelling an ever-increasing need for faster communication. Modern telecommunication data is mainly carried through fibre-optic cables, with pulses of light representing bits of data; the main factor limiting data transfer speed is the rate at which the optical receiver at the opposite end of the cable can detect light pulses. Graphene-silicon Schottky photodiodes are a promising alternative to traditionally-used germanium photodiodes, promising higher detection frequency and better contrast between light and dark. To make it less susceptible to erroneous measurements due to graphene having a low band gap, hydrogen functionalisation was used to increase the barrier potential of the Schottky diode so that a higher voltage would be required to allow current to pass through in forward voltage bias and trigger the sensor. This study seeks to determine the optimal conditions — of physical proximity, duration of exposure, and plasma power — for hydrogen functionalisation using radio frequency plasma. Graphene was synthesised using low pressure chemical vapour deposition, then transferred onto P-type silicon to create a photodiode. The graphene-silicon photodiode was then doped with hydrogen plasma to introduce defects in the graphene layer to increase the barrier potential of the photodiode. To assess the effectiveness of hydrogen functionalisation, photocurrent measurements were conducted while light was shone onto the photodiode in pulses of increasing frequency to find the magnitude and spontaneity of the response. Light was shone in pulses of 100ms, and was successfully detected by the photodiode. The pulse spacings were gradually decreased and it was found that the diode was able to detect pulse spacings as low as 1µs, significantly better than germanium photodetectors. The sample demonstrated clear optoelectronic response and was sensitive to changes in frequency. Results show that the intensity of the optoelectronic response in graphene-silicon diodes is inversely related to its physical proximity to the plasma source during hydrogen functionalization; and directly related to the power of the plasma and to the duration of exposure up to a point, after which it will deteriorate. Thus, it can be concluded that graphene-silicon Schottky diodes offer much promise in electronic communication.