全國中小學科展

2019年

狡兔八窟

科展源自於一個數學專欄上的問題,是關於兔子藏於圖形的某一個頂點,則在兔子位置可能變動和有所限制的射擊規則下,求出每一次最少要同時對幾個頂點開槍,才能「保證」可以獵到兔子。原始題目設定的圖形為正六面體,而我們將其擴展為不同的圖形,利用S(G)≥δ(G)+1得出路徑(Pn)、圈(Cn)的最小射擊點數,利用帶寬及|N(S)|相等的排序條件得出矩形(Pm×Pn)、長方體(Pm×Pn×Pk)、n維立方體(Qn)的最小射擊點數、利用觀察配合可行射擊策略,推測出完滿k元樹(k–treeh)的遞迴關係式並得出上界,建構可行方法,並期望算出最小射擊次數。目前研究結果為上述圖形之最小所需射擊點數及可行射擊策略。

微生物發酵法運用於蚓糞處理與雞場除臭之研究

本研究以不同微生物發酵方式(EM菌(Effective Microerganisms)、枯草桿菌(Bacillus subtilis)、蔡十八菌、木黴菌(Trichoderma))養殖蚯蚓,並固定牛糞、紙污泥與太空包與其他輔料(米糠、蔗渣、果皮、腐葉)成分(原料來自雲林縣工、農業廢棄物),並用本土種的掘穴環爪蚓(Perionyx excavates)分解,以室內分層式堆肥採收蚓糞,再用機械篩選出高純度蚓糞;以雲林縣農作物:小白菜(西螺鎮)、香瓜(二崙鄉)、番茄(口湖鄉)為實驗作物,探討蚓糞當有機肥,作物生長與甜度變化;並將蚓糞與剩料(純度較低)運用於雞場除臭功能,經實驗結果顯示,蚓糞用於農作物與除臭皆有顯著的效果呈現。

Co-evolution of transcription factors and their binding sites in DNA

The synthesis of RNA using DNA (transcription) can be regulated by special proteins - transcription factors (TF) by binding to specific DNA regions - binding sites (BSTF). The purpose of the project is building a phylogenetic tree of orthologous groups of the each studying TF subfamilies, compare it with the tree of the corresponding BSTF motifs belonging to one orthologous group, find some common parts.

TCA cycle perturbation induces renal mitochondrial dysfunction and enhanced oxidative stress in diabetic nephropathy-1H NMR-based untargeted metabolomics analysis for potential biomarkers and the effe

本研究藉由基因誘導之第二型糖尿病小鼠(Male B6.BKS-Leprdb mice; db/db mice)做為動物模型,並利用氫質譜儀與代謝體學之平台(1H NMR-based untargeted metabolomics)了解第二型糖尿病所導致的腎病變之疾病進程中的代謝途徑變化,及白胺酸的介入對於疾病進程的影響。研究發現,三羧酸循環及支鍊胺基酸代謝途徑中的代謝物,在基因誘導之第二型糖尿病小鼠尿液中有顯著下降,此發現指出糖尿病腎病變所造成的粒線體能量代謝功能下降。在肝臟組織萃取中,脂化膽固醇(esterified cholesterol)的上升及 β-胡蘿蔔素(β-carotene)、維生素A(vitamin A)及維生素A酸(retinoic acid)的下降顯示肝臟產生脂肪肝及其氧化壓力之上升。白胺酸的介入對於減緩腎臟粒線體受損及降低脂肪肝與氧化壓力並無顯著功效,此現象可歸因於支鍊胺基酸啟動mTORC1代謝途徑。本研究所標定之代謝物可被應用於第二型糖尿病及其所導致之腎病變的生物指標。

看見拔河中的力

本設計利用了應變規(Strain Gauge)的原理去製作一台可以量測拔河時繩子兩端的施加力量值,本設計採用的原理是當應變規受力時其電阻值會因為不同的力量而產生不同的應變的變化。進一步地,本設計的準確性也進行了校正。透過拔河繩拉力所產生的應變造成電阻變化,來轉換成力量數值,而利用自已設計製造的夾具,放置在拔河繩上並固定在繩子的兩側,分析其應力應變和受力狀況來測出力量值。 本設計只用簡單的應變規、電子顯示器和電子零件,低成本、簡單構造的設計來達成本研究之目的,來解決拔河過程中比賽的兩隊平衡力之顯示,使拔河更增加樂趣,增加拔河的的趣味性、數值化。

運用DDPG建構氣動式肌肉上臂運動強化學習模型

研究探討透過強化學習讓機器學習各種人類上臂運動。延續「運用氣動肌肉缸模擬上臂肌肉控制之研究」,透過有限的動作組可以控制上臂肌肉,然而因應環境條件的多變,模擬人類透過學習產生多樣多變的反應,在仿生的領域中有其必要。比較強化學習中的Actor-Critic與 DDPG (Deep Deterministic Policy Gradient)兩種模式,我們透過 Gym 建構具動作與環境限制的簡易訓練環境。比較兩個模型的細節後,最後選用了 DDPG 為我們主要的強化學習方法。首先我們利用 Tensorflow 模擬學習模式並記錄模擬移動的學習過程。我們運用到仿生手臂的實體,藉由影像辨識取得手臂的狀態,回饋至學習模型。仿生手臂運用學習資料進行移動,接著我們觀測系統所學習的移動是否可完成指定動作或工作。在軟體模擬中,我們證實了藉由達成數次目標的學習後,DDPG 可完成較細緻的移動。而 DDPG 在仿生手臂上的實作,則需透過輸出動作給氣動仿生手臂系統,來控制仿生手臂移動至目標位置。在未來,機器人將不單單只是運用馬達來當作動力來源,也能運用氣動肌肉缸成為動力元件。並且,人形機器人將會做出更像真實人體的動作。

Satellite Modeling of Wildfire Susceptibility in California Using Artificial Neural Networking

Wildfires have become increasingly frequent and severe due to global climatic change, demanding improved methodologies for wildfire modeling. Traditionally, wildfire severities are assessed through post-event, in-situ measurements. However, developing a reliable wildfire susceptibility model has been difficult due to failures in accounting for the dynamic components of wildfires (e.g. excessive winds). This study examined the feasibility of employing satellite observation technology in conjunction with artificial neural networking to devise a wildfire susceptibility modeling technique for two regions in California. Timeframes of investigation were July 16 to August 24, 2017, and June 25 to December 8, 2017, for the Detwiler and Salmon August Complex wildfires, respectively. NASA’s MODIS imagery was utilized to compute NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), land surface temperature, net evapotranspiration, and elevation values. Neural network and linear regression modeling were then conducted between these variables and ∆NBR (Normalized Burn Ratio), a measure of wildfire burn severity. The neural network model generated from the Detwiler wildfire region was subsequently applied to the Salmon August Complex wildfire. Results suggest that a significant degree of variability in ∆NBR can be attributed to variation in the tested environmental factors. Neural networking also proved to be significantly superior in modeling accuracy as compared to the linear regression. Furthermore, the neural network model generated from the Detwiler data predicted ∆NBR for the Salmon August Complex with high accuracy, suggesting that if fires share similar environmental conditions, one fire’s model can be applied to others without the need for localized training.

合成抗體徵召分子以提升免疫細胞對細菌辨識力之研究

自古以來,致病細菌便是人類免疫系統的強敵,加上近年來抗生素的濫用使細菌在具有抗藥性後更加棘手,相對的人體免疫系統愈顯衰弱。本研究成功合成了一個可以連結細菌和免疫細胞的複合分子,此複合分子是由萬古黴素、連接單元和生物素組成,稱之為複合分子VLB(Vancomycin-Linker-Biotin)。其中萬古黴素用來辨識並結合細菌細胞壁上的肽聚醣,生物素則可以與抗體結合並徵召免疫細胞。 我們以螢光基團及抗體等,實際測試複合分子VLB對細菌的辨識力,確認其能在萬古黴素端與革蘭氏陽性菌連結,並在生物素端與抗體結合。我們藉由複合分子VLB增加細菌及免疫系統之間的親和力,以提升免疫細胞辨識細菌的能力,使其更快更有效地對抗細菌,解決多重抗藥性細菌難以擊敗的問題。利用本研究合成抗體徵召分子的方法,大幅提升免疫細胞對致病細菌的辨識力,將來可望有效地應用在臨床醫學上。

探討HER2/EZH2訊號途徑調控glutamine代謝基因GOT2以影響胰臟癌細胞生長之作用

根據世界衛生組織的統計,胰臟癌高居全球癌症死亡人數第四位,亦為臺灣十大癌症死因之一,為最具侵略性、致死性及預後不佳的癌症。HER2為調控癌細胞增生重要致癌因子,在胰臟癌患者大量表現,其在乳癌細胞中可磷酸化並穩定負責調控組蛋白甲基化的EZH2蛋白表現;而GOT2已知在粒線體內調控麩醯胺酸(glutamine)代謝產生-ketoglutarate,並參與氧化磷酸化幫助胰臟癌生長。 本研究探討HER2/EZH2訊息傳遞途徑是否影響GOT2抑制對胰臟癌細胞之死亡作用,以及HER2/EZH2是否藉由甲基化GOT2調控glutamine代謝與malate-Aspartate循環,找尋出HER2是否藉由EZH2調控GOT2活性而參與癌細胞glutamine代謝反應,觀察HER2、EZH2、GOT2訊息傳遞途徑。 研究結果發現細胞生長作用與EZH2表現較HER2表現具有相關性,並證實EZH2與GOT2確實存在交互作用關係,透過EZH2與GOT2結合並甲基化GOT2而調控其作用,增加活性表現與抗藥效果,顯示EZH2與GOT2參與胰臟癌細胞glutamine代謝機制重要角色。

英文句子依閱讀程度進行簡化之研究

英文句子簡化是一項單語言句子轉換的任務,其中一句複雜的句子會轉換為一句或多句的簡單句子。相較於過去研究學者著重於研究如何優化句子簡化的結果,如何將一句英文句子依閱讀程度簡化為不同簡單程度的簡化句是一項自然語言處理方面嶄新的研究領域。本研究首先訂定英文分級標準,整合歐洲(CEFR)與台灣(LTTC)母語非英語國家機構對英文的分級標準,將英文分為三種難易程度,並依此將Wekipedia及Newsela的簡化前-簡化後平行語料重新刪整為三種目標程度等級的平行語料庫。另一方面,運用已發展成熟的Seq2seq簡化模型,創造一個多解碼器模型,分別依據目標程度不同的訓練資料集訓練三種解碼器。在BLEU、SARI指標以及Coverage計算下,本研究結果相較於相關研究可展現出優異成果。