連續函數與多倍角公式推廣研究
本研究考慮的主要問題: 若非常數之連續函數f滿足∀m∈N,∃P(x)∈C[x] s.t.f(mx)=P(f(x)),其形式應為何? (一)、若考慮函數範圍為解析函數,則f(x)的形式必為下列三者之一: (1).axn+b (2). akx^n+b (3). acos(kxn)+b ,其中a,b,k∈C、n∈N (二)、若將考慮函數範圍改為:連續函數f:[0,∞)→C,則f(x)之形式必為下列三者之一: (1).axk'+b (2). akx^n+b (3). acos(kxn)+b ,其中a,b,k,k'∈C、n∈N、Re(k' )>0 (三)、若將考慮函數範圍改為:連續函數f:(0,∞)→C,則f(x)之形式必為下列四者之一: (1).alogx+b (2).axk'+b (3). akx^n+b (4). acos(kxn)+b ,其中a,b,k,k'∈C、n∈N 在本篇的最後,我們也將N的角色以其他正實數子集取代掉以推廣結果。
圓周上跳躍回歸問題之研究
圓周上相異n個點,將圓周分割成n段弧,每次每個點沿逆時針方向變換成與下一點所成弧之中點,若某點經m次變換後回到初始點,則m的最小值以及m的所有可能值為何?我們發現,m的最小值為n+2。更進一步發現,m的充要條件為m≧n+2且m≠kn-1, kn, kn+1,其中k為正奇數。接著,我們將問題一般化,圓周上相異n個點,沿逆時針方向變換成與下一點所成弧之p:q處,若某點經m次變換後回到初始點,則m的最小值以及m的所有可能值為何?我們發現,若p, q∈N,(p,q)=1,當變換次數r足夠大時,此n個點的位置會收斂至圓周上n等分點,同時,此n個點會在變換T=n(p+q)/(n,p)次後再次收斂至相同的位置。在這篇研究中,我們推導出任意點Pi變換r次後的點之位置坐標Ai(r)的一般式,不失一般性,我們針對P0求出A0(r)的最小極端值Lr與最大極端值Ur,在變換次數r足夠大時,透過觀察Lr與Ur對應到圓周上的收斂位置所形成的區間是否涵蓋原點,可預期P0變換r次後可否回歸。此外,我們也針對n個點具特殊初始位置座標來研究其回歸性質。
Antibacterial Properties of Mānuka
Antibacterial Properties of Mānuka Mānuka (Leptospermum scoparium) is a native 紐西蘭 plant that has long been used by indigenous Maori for its medicinal and therapeutic properties, yet is relatively unknown to science. Many of our native species may contain novel compounds with practical applications in our lives. Research indicates that mānuka has anti-microbial, anti-fungal, herbicidal, insecticidal and anti-bacterial properties, and suggests that compounds similar to Grandiflorone (ß-triketones) cause these effects. This project investigates the antibacterial properties of mānuka leaves, using the bacteria Photobacterium phosphoreum for biological testing. With the recent rise in multidrug-resistant bacteria, it is now more vital than ever to utilize traditional knowledge to inform research and development of innovative new antibiotics, antimicrobials and similar biologically important compounds.
Σn=1∞(n/(Cn2n))=√(x/(4-x)3) (√x(4-x) + 4sin-1(√x/2))與其相關的無窮級數
本文從一個博奕遊戲談起,探討遊戲的期望值得到一無窮級數Σn=1∞n/Cn2n 並嘗試用相關的數學概念與方法思考,首先處理問題Σn=1∞n/Cn2n 與Σn=1∞n2/Cn2n 的值,過程中利用了Σn=1∞n/Cn2n 函數與Σn=1∞n2/Cn2n 函數的性質將欲求之無窮級數轉化成積分或微分方程式的型態,再利用奧斯特洛格拉德斯基積分方法解出所求。 為了更有效率的得到相關之無窮級數,引進了微積分工具中之冪級數的概念,輔以微分方程式公式解求出了 f(x)=Σn=1∞Xn/Cn2n =√x/(4-x)3 (√x(4-x) + 4sin-1(√x/2)), x∈(-4,4), 進而推廣、延伸與其相關的一系列無窮級數,並利用導函數f'(x)求得 Σn=1∞n·2n-1/Cn2n的值。 接下來討論與f'(x)相關的無窮級數,發現可利用f(x)的高階導函數透過迭代方式得到Σn=1∞nm/Cn2n的值,其中m為任意正整數,歸納這些級數後可以應用在本文之博奕遊戲,讓獎金的選擇更富有變化性。 最後觀察f(x)與卡塔蘭數列{Cn}的倒數所構成之冪級數有所關聯,解出 Σn=1∞Xn/Cn的收斂函數後求出了Σn=1∞1/Cn的值以及{1/Cn}的偶數項與奇數項的和。