綠色親善大使之誕生-生物可降解性奈米複合材料的研究
近年來,由於科技的進步,導致合成性高分子材料大量開發利用,雖然便利 了人們的生活,卻造成許多環保問題,例如:資源的消耗,以及對環境的污染。 然而「生物可降解人工合成的聚乳酸高分子」和「天然的幾丁聚醣高分子」均具 有優良的生物可相容性及生物可分解性,添加無機層狀蒙脫土可補強其機械性質 之不足。本實驗之目的是以生物可分解之合成性高分子聚乳酸作為主體,再和經 有機化改質後的蒙脫土摻混而製備出聚乳酸/蒙脫土之奈米複合材料。 本實驗主要分為三大部分: (一)以界面活性劑對蒙脫土進行改質 (二)製備聚乳酸/蒙脫土奈米複合材料試片 (三)對試片進行生物降解性測試 此外,本實驗以X-ray 繞射儀(XRD)檢測改質後蒙脫土層間距離的變化; 場發射電子顯微鏡(FE-SEM)觀察生物降解後複材之表面型態;膠體色層分析 儀(GPC)檢測生物分解前後複合材料之分子量的變化;DMA 檢測複合材料之 機械性質;TGA 檢測複合材料之熱穩定性Thanks to the development and advance of modern technology, the synthetic polymers have been put in wide use. Though the synthetic polymers provide convenience for our lives, they also bring about many environmental problems, such as consumption of natural resources and environmental pollution. Nevertheless, both biodegradable man-made PLA(Poly Lactic Acid)and natural chitosan contain good biocompatibility and biodegradability. Else, adding MMT(Montmorillonite)into PLA can modify the mechanical properties. Our experiment aimed to prepare the PLA (Poly Lactic Acid)/ Montmorillonite Nanocomposites by adding organo-modified MMT into the biodegradable PLA. The experiment underwent three phases:(1) modifying MMT by means of CTAB(n-Hexadecyl Trimethyl-ammonium Bromide, CTAB ) and chitosan (2)preparing PLA(Poly Lactic Acid)/ Montmorillonite Nanocomposites (3)testing the biodegradability of the Nanocomposites we prepared. While conducting the experiments, we made use of the XRD(X-ray Diffraction)to examine the change in MMT’s layer thickness. The SEM(Scanning Electron Microscope)was also employed to observe the surface pattern of the Nanocomposites, and used Gel Permeation Chromatography (GPC)to examine the decrease of the Nanocomposites’ molecular weight. Moreover, we also used Dynamic Mechanical Analysis (DMA)to test the mechanical properties of the Nanocomposites(Tensile testing). Last, we test the thermal stability of the Nanocomposites by using Thermogravimetric Analysis (TGA).
松鶴土石流災害初步調查分析
The heavy rain fall brought by Typhoon Mindulle in 2004 caused debris flows in the mountains of Taiwan. The most serious debris flows took place in the areas along the East-West Expressway. The area from Mt. Li to Tien Leng, namely, from the upper course to the middle course of River Da Chia. There was plenty of debris flowing to the courses of the rivers from the hot spring area in Ku Kuan to the starting place of East-West Expressway, Tien Leng. This situation caused the sedimentation of the river courses. According to the data issued by The Soil and Water Conservation Bureau of the R.O.C, on July 2nd debris flows erupted in the First and the Second branches of the river in Sung Ho Village and caused 1 death and 2 injuries, besides, the disaster destroyed 8 major roads causing transportation breakdown. On August 24th, the Typhoon Aere caused the heavy flow of the river which destroyed Po I Elementary School and Chun Chin Bridge. The researchers employed research reviews and field investigations as the research methodology with the research scope of Sung HoVillage in middle Taiwan and disaster of debris flow. The First and the Second branches of Sung Ho River belong to the category of high potentiality of danger of debris flows. The Chichi Earthquake had accumulated sufficient sedimentation of soil and stone. 2004 年敏督利颱風豐沛的雨量,引起台灣山區發生土石流,中橫公路沿線尤其嚴重。從 大甲溪上游的梨山到中游的天冷都有災情;谷關溫泉區至新中橫起點的天冷,大量土石,流 入溪中,造成河道淤積。據水土保持局的資料顯示,7 月2 日松鶴一、二溪爆發土石流,傷 亡各1 人,2 人失蹤,對外聯絡道路台8 省道崩塌中斷。8 月24 日艾莉颱風來襲,溪水暴漲, 沖毀博愛國小、長青橋及民房7 戶【1】。 本文以松鶴為試區,土石流災害為對象,使用文獻探討及現場調查的方法,進行研究。 結果顯示,松鶴一、二溪,均屬於土石流高危險潛勢溪流;肇因於九二一地震的崩塌地,提 供充足的土石堆積物。
拖線溜點
原題目是環球城市盃中,一個圖論的問題。而題目提供了一個證明,是證 明此種連線都是偶數的圖形,一定會在三的倍數邊形成立。在經過一番思考過 後,我們希望能將原本的偶數連線性質加以驗證,並確定奇存在性。此時,我們 也不禁聯想到:奇數是否也有所特別的性質。因此,我們也向奇數連線做研究。 就在平面得到了部分結論的同時,我們想到這個問題是否可以推廣至三維 空間。然而在推至三維空間的過程中,我們又聯想到,另一種平面:球面。在球 面上放點,能否也找到一些不同的性質。因此,我們分別從平面、球面、立體圖 下手。 基本上,探討平面和立體問題的方法,是以土法煉鋼的方式來求出結果。 然而這種圖論的問題,不可能嘗試到無限多點的情形。因此,我們是著找出一個 關鍵的key,那就是結合性質和外接合性質。以這兩種方法,我們可以將一個簡 單的基本圖形,推向無限多點和無限多邊的情況。 接下來,還有討論一些特殊狀況,例如: deg v=3n+1,探討其結果。 最後得到的結論是: 1、平面偶圖成立的條件為:此多邊形為三倍數邊形, 而且除了內 部一、二、四點以外, 其他點數都可以成為偶圖。 2、平面奇圖成立的條件為:奇數邊形的情形下,除了三點以外,其 他的內部奇數點的都可以成為奇圖。偶數情形下, 除了四 點以外, 其他的內部奇數點的都可以成為偶圖。 3、三角形平面圖,d eg n 皆為m 成立的條件:2< m< 6( m? N ) 4、三角形內外任意點d eg 皆為3n ( n ? N )的成立條件: 三角形內部4 x+1 個點( x ? N )。 5、三角形內外任意點d eg 皆為3n+1 ( n ? N )的成立條件: 三角形內部3 x 個點( x ? N )。 6、立體偶圖n 頂點(n>4)面體的成立條件為: 內部點數為5m+ n- 3、5m+ n- 1、5m+ n、5m+ n +1、5m+ n +3。(m 為大於或等於零的整數) 7、立體奇圖四面體的成立條件為: 內部點數為偶數皆存在。 The original problem is a question of Graph Theory in IMTOT ,which provides\r a proof that proving the figure which its linking-line number is even ,should also be\r contented in the triple-sides figure. After profound consideration ,we try to make sure\r the existence of the properties the we mentioned above. Meanwhile ,it also occurs to\r us that whether the properties would be contented ,in the figure which its linking-line\r number is odd. So we make our way to it. Additionally ,three-dimensional and\r spherical figures are part of our research as well.\r Basically ,we discuss the problem in two-dimensional and three-dimensional\r aspects with the simplest method .However ,it is impossible to discuss the problem in\r unlimited dots .Hence , we are going to find a “key” to solve this problem .As a\r result ,we can find a simple basic-picture , and expand to infinite-multiple lateral\r pictures.\r Next step ,we also discussed some special situations , for example: for each\r point v , deg v=3n+1.\r At last the conclusion is following:\r 1、The conditions of linking-line number is even: triple-sides. And the amount of\r points inside the figure is without 1,2,and 3.\r 2、The conditions of linking-line number is odd: In the odd-sides figure , all number\r of the points inside the figure can be content without 3 point. In the even-sides\r figure , all number of the points inside the figure can be content without 4 point.\r 3、In a triangle , each point’s deg is the same number m: 2
數字波的節點探討
數字波是探討在直線上的起始點、位移速度、總數相互變化的節點關係。在直線上,將全部格子數做為總數(m),開始彈跳的點為起始點(i),每次彈跳的格子數為位移速度(s),被踩到的格子就是節點。節點是由位移速度和起始點決定,起始點本身可視為節點之一,之後的節點是由起始點加n 個位移速度產生。我們分別以三種型式討論:起始點等於位移速度,總數增加:使起始點和位移速度所代表的數字相同的彈跳。節點呈2、s、s+2…起始點固定,位移速度與總數增加:觀察位移速度和總數的關係。兩節點的和=s+2位移速度固定,起始點與總數增加:探討起始點和總數的關係。發現節點隨起始點有規律的變化在上述討論的型式中,我們再進一步將位移速度分為質數和合數,進而依其因數變化,可觀測到很多特殊的節點變化。The number wave is to discuss the relationship of the starting point, the moving speed, and the variations of total amount. In straight lines, let all the trellises be total amount (m), and let the starting jumping point be the starting point (i). The trellis number of each jump is the moving speed(s). The trodden trellises are knots. And knots are decided by the moving speed and the starting point. The starting point itself can be viewed as a knot. The following knots produce with the starting point and n moving speeds. We respectively discuss them in three types: When the starting point equals the moving speed, the total amount increases. The number of the starting point is the same with the jumping moving point; the knots are 2, s, s+2…. When the starting point is fixed, the moving speed and the total number increase. From observing the relationship between the moving speed and the total number, the sum of two knots is s+2. When the moving speed is fixed, the starting point and the total number increase. After our research into the relationship between the starting point and the total amount, we find the knots have regular variations with the starting point. From the types discussed above, we further divide the moving speed into prime numbers and non-prime numbers. Furthermore, according to the factor variations, we can see a lot of specific knot variations.