安非他命對小鼠中腦紋狀體之細胞凋亡相關蛋白質表現的影響
安非他命的濫用在台灣是非常嚴重的公眾健康及社會問題。安非他命會導致一連串的行\r 為異常,包括在中腦紋狀體內釋放多巴胺及阻止多巴胺回收來增加使用者的活動力。由於安\r 非他命會對腦細胞造成傷害,本研究的目的為探討低劑量、無立即毒性之安非他命(類似於人\r 類使用習慣)於短期內是否會對老鼠大腦紋狀體內的蛋白質表現有影響。因此利用西方點墨法\r 分析施打低劑量安非他命(2 到6 mg/kg)約一星期之後,C57BL6 小鼠的大腦紋狀體中一些重\r 要蛋白質[包括腺?酸受體A2A-R、第五亞型腺?酸環化?AC5、caspase-8、PARP、NF-κB\r 及血紅素加氧?-1(HO-1)]的表現是否有改變。實驗結果顯示,低劑量安非他命處理對大部分\r 蛋白質的表現並沒有明顯的差異,但在施打安非他命老鼠之大腦紋狀體中,HO-1 有些微但明\r 顯的增加,顯示安非他命可能對腦組織產生氧化性傷害。因此長期使用安非他命對中腦紋狀\r 體是否造成傷害是值得關心及繼續探討的課題。The wide spreading use of amphetamine (AMPH) in Taiwan has become a serious\r public health and social problem. AMPH evokes a series of behavior abnormality including\r enhanced locomotor behavior by releasing dopamine and inhibiting dopamine-uptake in the\r striatum. Since AMPH is known to cause brain damage, the purpose of this study is to\r investigate the expression of several important proteins in the mouse striatum after\r treatment with low and non-toxic dosages of AMPH for a short period (mimicking the\r common usage pattern of humans). C57BL6 mice were daily IP-injected with various doses\r of AMPH (0 to 6 mg/kg) for one week. Expression levels of adenosine receptor A2A-R,\r adenyl cyclase type 5,caspase-8, PARP, NF-κB and heme oxygenase-1 (HO-1) in the\r striatum were analyzed by Western blotting technique. Most proteins examined were not\r affected by the 1-week AMPH treatment, except HO-1. A slight but significant increase of\r HO-1 by AMPH treatment indicated that AMPH may cause oxidative damage in brain.\r These results suggest that the injury induced by long-term AMPH exposure warrants our\r further concerns and investigation.
乳酸桿菌及啤酒酵母之相互作用及其代謝產物對Clostridium difficile 生長之影響
市面上可以看到多種品牌紛紛推出了以“啤酒酵母”作為號召的乳製品,標榜健康取向\r 的“啤酒酵母優酪乳”也是其中的一件,我們蒐集了關於啤酒酵母以及乳酸桿菌的文獻,打\r 算研究之間的關係,乳酸菌屬於益生菌,主要的用途是製作優酪乳,可以協助維持體內正常\r 的腸道菌相,降低血清膽固醇以及預防骨質疏鬆症(Rolfe, 2000);啤酒酵母最主要的用途為\r 啤酒的製作,具有解決失眠、消除疲勞、改善痢疾的功效。外國的克芙爾(kefir)也是屬於含\r 有乳酸桿菌及酵母菌菌相的食品,而且也對健康有益。因此我們提出了一個問題﹕啤酒酵母\r 與乳酸桿菌的代謝產物是否有著互利的功效呢?在拋出第一個問號後我們繼續尋找資料以\r 及著手我們的實驗。在文獻中(Gaon et al.,2003;Corthier et al.,1992,1986)也曾經提及啤酒酵\r 母與乳酸桿菌對於Clostridium difficile 所引起的偽膜性腸炎的關係,所以使我們又想問兩個\r 問題:究竟Ampicillin 對於乳酸桿菌、酵母菌、C. difficile 的影響有多大?而乳酸桿菌及酵\r 母菌對於C. difficile 的影響又是什麼?
見微知「駐」-水珠律動與圓駐波
It is always fascinating to see water droplet’s dancing around on a Japanese teppanyaki hotplate surface. The water usually does not evaporate immediately, but form interesting shapes, dance around and follow by evaporation of gaseous water and disappear. In this experiment, we designed a very simple experimental set-up to observe the little water droplets dancing on a heated hotplate. A homemade stainless plate and a small heater attached to the plate, and a thermal couple was assembled. With this simple setup, we observed the variation of water droplet’s shape as a function of the hotplate temperatures. The temperature of the water droplets, the duration of the water on the hotplate, and the shape number were measured. The shape formation mechanism was proposed. We found when the water droplet was subject to high heat due to the contact of the surface and the hotplate, the abrupt evaporation of the water molecules and violent vibration cause the formation of the various shapes to reach thermal equilibrium; the number of the shapes and the oscillation can be described by Laplace’s equation,Using a high-speed camera, we found the higher the temperature of the water, the more variations of the water droplet shapes can be observed. In addition, at a certain temperature range, the number of the water shapes did not change, suggesting a similar phase transformation behavior on the shape formation.
緣起: 邂逅專題研究、水珠漫舞、剪輯影片,引起我們想更進一步揭開它的神秘面紗。
緣續: 了解熱平台上水滴大小的變化及水珠基本的形狀及變化律動。
緣繫: 進一步研究水珠多變的面貌,並探討水珠的大小、溫度、停滯時間及變化規律相關機制。
緣定: 糾纏在水珠圓舞曲中有如大珠小珠落玉盤的曼妙,其中埋藏了平均圓與能量量子化的律動。
澱粉?抑制劑之研究
植物合成澱粉?抑制劑可以對抗動物的取食,國外實驗證明數種澱粉?抑制劑對害蟲防 治具有顯著效果,其中以腰豆(Phaseolus vulgaris)研究最多。我們利用5% T.C.A.進行粗萃,從台灣常見豆類中篩選出四季豆(與腰豆同種不同品系)與菜豆,對麗蠅的澱粉?具有明顯的抑制效果,對豬胰臟與黃豆澱粉?的抑制效果則小或無,此種抑制特異性深具害蟲防治的潛力。經由溫度與pH 的試驗發現粗萃中的澱粉?抑制劑成分應為蛋白質。我們以四季豆作為繼續研究的對象,將粗萃進一步純化,經由陰離子交換與膠體過濾層析,分離出單一蛋白質,經蛋 白質定序比對確認其可能為國外發表的腰豆澱粉?抑制劑—αAI-1。經由測試發現此抑制劑在 85℃時仍能抑制果蠅澱粉?,為一相當穩定的蛋白質;且抑制劑的作用受pH 值影響很大,在偏酸性環境下的效果最好,與昆蟲分泌澱粉?的部位亦為酸性環境有相當密切的關聯;且其 抑制作用具特異性,可明顯抑制果蠅、入侵紅火蟻、白蟻、蟑螂及麵包蟲等昆蟲的澱粉?活性,對人類唾液、豬胰臟、四季豆本身及黃豆澱粉?的抑制效果很小或無,值得繼續深入研究。 Plant amylase inhibitors can fight against predation from plant-eating animals. It has been reported that several amylase inhibitors have an obvious effect on pest control; among them that from Phaseolus vulgaris got the most surveyed. 5% T.C.A was employed to make crude extracts. We have screened the amylase inhibitor activities from crude extract among beans common in Taiwan. The inhibitors from both string beans (the different strain of Phaseolus vulgaris) and cowpea notably inhibited the amylases in Chrysomia megacephala, but little or no inhibition in porcine pancreas and soy bean. This specific inhibition behavior suggested strong potential in pest control. Its activity can be affected by temperature and pH suggested that amylase inhibitors in crude extracts should be proteins. String beans were chosen to be further purified from the crude extracts. A single protein was isolated after ion exchange and gel filtration chromatography. Through protein sequencing, the partial amino acid sequences were highly homologous to that ofαAI-1 from Phaseolus vulgaris, indicating it might beαAI-1. The purified protein still can inhibit the amylase from Drosophila melanogaster at 85℃, suggesting it is thermal-stable. Its activity was affected by pH and reached the peak in weak acidic environment, which might be related to the fact that amylases are secreted in acidic environment of insect’s midgut. It obviously inhibited the amylases from D. melanogaster,Solenopsis invicta, Odontotermes formosanus, Periplaneta Americana Linnaeus, and Alphitobius sp., while not to human saliva, porcine pancreas, soy bean and string beans itself. The unique pattern of inhibition activities of the purified amylase inhibitor was worthy of further anlysis.
溫差電池的熱力學研究與應用
溫差電池中若僅進行的反應,則其電池電壓與溫差成正比,且純粹是利用化學反應將熱能轉換成電能,我們稱之為「典型溫差電池」,由熱力學公式可推導出典型溫差電池的電動勢(ΔS = S(s)—S(aq),S為絕對熵, n為得失電子數,1F = 96487 C ),且得到下列三項推論來說明溫差電池的特殊現象。 (1) 同一溫差電池,其電動勢與溫差成正比 (ε∝ ΔT)。(2) 不同的溫差電池,當溫差一定時,電壓ε 與ΔS 成正比,與得失電子數n 成反比。典型溫差電池中,電解液濃度越小,金屬離子濃度也愈小,會使得ΔS = (S(s)—S(aq))的絕對值變大,因此溫差電池的電壓也就愈大。(3) ΔS 值的正負決定電壓ε 的正負。Cu(NO3)2 及ZnSO4 溫差電池的ΔS 為正值,所以高溫杯為正極;AgNO3 溫差電池的ΔS 為負值,所以高溫杯為負極。因水溶液中陰、陽離子不能單獨存在,所以單一離子水溶液的絕對熵無法求得,但科學家把氫離子水溶液的標準絕對熵定為零,藉以求出其它離子的絕對熵,然而我們測得在一定溫差時典型溫差電池的電動勢ε,再查得金屬的標準絕對熵 S(s),代入S(aq) = S(s) — nFε/ΔT,便可得到離子水溶液的絕對熵。Cu(NO3)2 溫差電池的電解液中若含有1M 或0.5M 的KNO3,電池電壓仍然與溫差成正比, 但卻可獲得較大的電流,我們稱此類溫差電池為「改良型溫差電池」。我們利用改良型溫差電池的原理,自製環保、節約能源、可重複使用的實用溫差電池,以PVC 水管當容器,上、下兩端開口用銅片封住當電極,管內裝海棉及0.125M Cu(NO3)與 1M KNO3 溶液,熱源加熱上層銅片形成溫差,當溫差維持在70℃,電壓約為70 mV,若串聯30 個實用溫差電池,電壓可達2 V 以上,就可以對鉛蓄電池充電。實用溫差電池的熱源可由回收冷氣機、工廠的廢熱,或直接利用太陽能來當熱源。
If the temperature difference cell only goes through the following reaction Then the potential created by the cell is proportional to the temperature difference, and such a reaction purely changes the thermal energy into electrical energy through chemical reaction, which we often name it “typical temperature difference cells”. We can come to the following formula for the typical temperature difference cells through a series of thermodynamic formula: ε= ΔT . ΔS/ nF (ΔS = S(s)—S(aq), where S is the standard 3 entropy, and n is the number of electrons gained or lost, and 1F = 96487 C). We also provide the following three inferences to demonstrate the special phenomenon for the temperature difference cells: 1. Within the same temperature cell, the electromotive force (EMF) is proportional to the temperature difference. 2. When the temperature difference keeps constant, the electromotive force is proportional to the ΔS in different temperature cells, and is inversely proportional to the number of electrons gained or lost. Within the typical temperature difference cells, when the concentration of the electrolyte becomes more diluted, the concentration of the metal ions also proportionally become lower, which will make the absolute value of the following equation bigger, as a result, will make the electric potential of the temperature difference cells bigger: ΔS = (S(s)—S(aq)) 3. The value of ΔS decides the value of the electromotive force. The ΔS of the following temperature difference cells is positive value: Cu(NO3)2 and ZnSO4 . As a result, within the copper and zinc temperature difference cells, the higher temperature glass is the anode. On the other hand, the ΔS of the AgNO3 temperature difference cell is negative, which means that within the silver temperature difference cell, the higher temperature glass is the cathode. Meanwhile, because the cations and anions can not exist alone, therefore, it is not possible to find the standard entropy of the single ion solution. However, scientists define the standard entropy of the solution containing hydrogen ion to be zero, as a result, we only have to determine the electromotive force for a typical temperature difference cell, while keeping the temperature difference constant, followed by finding the standard entropy for the said metal S(s). Inserting it into the following equation to find the standard entropy for the ion solution. S(aq) = S(s) — nFε/ΔT If the electrolytes for the Cu(NO3)2 temperature difference cell contains 1M or 0.5M KNO3 , the electromotive force is still proportional to the temperature difference, and we can obtain bigger electric current. We call this kind of temperature difference cells “improved version of the typical temperature difference cells”. We try to make more environmental, energy saving, and recyclable temperature difference cell by applying the theory of the improved version of the typical temperature difference cells. We use PVC water pipe as the containers, both edges of the pipe sealed with copper metals, also work as the electrodes. Within the pipe filled with sponge and 0.125M Cu(NO3) and 1M KNO3 solution. The heat source keeps heating the upper copper metal to keep constant temperature difference. When the temperature difference is kept around 70℃, the electric potential is 70 mV. If we can connect 30 practical temperature difference cells in a series, the electric potential will reach 2V, which can then charge the lead rechargeable battery. The heat sources of the practical temperature difference cells can be supplied by the recycled air conditioners, heat waste from a factory, or directly comes from the solar power.
稀子蕨的生殖策略探討
稀子蕨(Monachosorum henryi Christ)生長在台灣中海拔山區,是少數具有特殊生殖方式(不定芽)的蕨類。本研究對東眼山的稀子蕨族群進行物候調查,以了解其進行孢子繁殖及不定芽繁殖的過程,並試圖探討稀子蕨的不定芽是否可增加其族群對環境的適應性。研究結果顯示稀子蕨的孢子體及原葉體都無法在乾旱的環境下生存,常有大規模乾死的現象;而其不定芽則具有很強的耐旱性,無論是在季節普遍性及幼苖發育程度上,生殖芽都比孢子繁殖較佔優勢。而且其不定芽於旱季結束後,可迅速萌發,長出的孢子葉可隨之進行有性(孢子)及無性(不定芽)生殖,使其族群不至於在旱季中有地區性滅絕之虞。;Monachosorum henryi Christ , which exists in the middle elevations of the mountainous regions of Taiwan, is a fern with a special reproductive system seldom found in other ferns.This study investigates the phenology of Monachosorum henryi population in the Don Yang mountain region. Its purpose is to understand the sexual and asexual reproductive cycles of these ferns and to interpret whether or not the buds can increase the fitness of their population during the dry season.The results show that it is extremely difficult for the sporophyte and prothallus of Monachosorum henryi to survive in a drought. However, the buds have a much stronger drought endurance. According to this investigation, the adventitious buds of Monachosorum henryi are superior to the spores in seedling development in every season. Adventitious buds are able to germinate soon after the dry season as well as in any other season, and are able to grow spores and buds on their fronds enabling both a sexual and asexual way of proliferation. In this way the fern avoids a district extinction of their population.
姑婆芋的傳粉生物學
我們在校園內設置兩樣區,從2007 年4 月至2007年6月,共調查9株姑婆芋,93朵佛焰花,以瞭解姑婆芋生活史、傳粉昆蟲生活史及兩者之間的互動關係。 姑婆芋在11 月至7 月花期時會不斷產生佛焰花苞,剛冒出的花苞經過1到3天後,雌蕊漸成熟,佛焰苞會漸漸展開,開始產熱及一些特殊氣味,吸引果蠅科未知種的蠅類傳粉。當胚株受粉後,佛焰苞頸部會閉合,迫使傳粉昆蟲會往上爬到雄蕊部位攜帶花粉,飛至另一株姑婆芋雌蕊上傳粉,因此姑婆芋與傳粉昆蟲之間具有互利共生的關係。佛焰花序主要產生氣味的部位是在附屬物及雄部,而佛焰苞則可以幫助吸引更多傳粉昆蟲。佛焰花序的附屬物及雄部相對溫度較高,可能具有產熱以吸引傳粉昆蟲的功能。 ;Our study started from April, 2007 to June, 2007. We observed a total of 9 Alocasia odora and 93 spathes to help understand the life cycle of these understory clonal herbs, its pollinators, and the relationship between them. Alocasia odora produces spathes continuously during inflorescence. In the female phase, the pistillate part of the inflorescence ripens and an opening appears at the spathe, heat and a special odor is produced to attract pollinators of Drosophilidae. When the ovule is pollinated, the male phase begins and the opening encloses, which forces the pollinators upwards to the staminate part to carry its pollens, and then fly to an other Alocasia odora, Heat and the special odor are produced by the appendix and the staminate part of the inflorescence, and the spathe can increase the number of pollinators attracted. The relationship of mutualism between these two species contribute to the study of coevolution.
多變色膽固醇型液晶面板之研發
多變色膽固醇型液晶面板為利用具雙穩態(Bistable)特性及因螺距不同而反射特定波長的膽固醇型液晶(CLC)。本研究創新作法為二:一、利用固化的方式使膽固醇型液晶螺距大小不同,使變色機制不同於一般電腦液晶面板,所製的液晶面板為以液晶的特性變色。二、將液晶螢幕中控制液晶的IPS 系統、側邊電極應用於液晶白板中。雙層液晶白板上層為混合E7(向列型液晶)+S811(旋光物質)的Bistable CLC,下層為混合RM82、CB15、BL006、I-369 的多變色(Multi-color)CLC 面板。The main purpose of the research plan lies in the application of the CLC. By using the Cholesteric -the bistable and the wavelength due to different pitch sizes- we can make liquid crystal whiteboard. First, by heating and curing, we are able to cause the pitch sizes of CLC to be different. Unlike the commonly used LCD in computers, the features of CLC itself are applied to the color changing mechanism we make. Second, we apply the IPS horizontal electric field and flank electrode to our LCD whiteboard. In making the Multi-color CLC Display, we mix RM82, CB15 and BL006.