全國中小學科展

臺灣

打「皂」健康人生~自製防疫抗菌手工皂

COVID-19肺炎病毒肆虐全球,強調用肥皂多洗手,已是大家認為最有效的防疫作為。有鑑於此,本研究希望透過學習肥皂製作過程,探討「皂化反應」的溫度、重量與pH的變化,以及「皂化現象」的影響因素,最後嘗試製作防疫抗菌手工皂分送給全校班級,共同為防疫盡一份地球公民的責任。研究中分別觀察皂化過程的pH值、硬度與去污力,發現皂化過程中的油品種類、油品溫度、鹼水與油品間的溫度差、氫氧化鈉的量、油品比例、環境溫度,都會不同程度的影響成皂情形。我們也發現,在實驗中設定的任何溫度都能成皂,而非一般認知的特定溫度。最後,利用實驗室培養的純化大腸桿菌,測定以艾草液、左手香液製成的肥皂有不錯的殺菌效果喔!

我的味噌湯-微小顆粒在液體中沈澱模式之觀察研究

The purpose of the research is to investigate the settling mode of the viscid micro-particle, such as the ones from the “Miso Soup”, in static liquid. We constructed the “constant temperature environment” by constant temperature trough and transparent glass trough. The data is gathered from pictures captured from DV and then analyzed by Media Player. We did a stability test prior to the start of the experiment and found the system with good stability. The results of the experiment are as followed: 1. The settling mode can be divided into four phases: (a) Initial accelerated phase (b) Maximum phase (c) Gradually decelerated phase (d) Stationary phase. 2. The lower the fluid concentration is in the fixed temperature: a. the faster its settling interfaces appears; and the deeper it becomes for the depth of its settling interface. b. the faster the maximum sedimentation rates of the settling interface becomes and the slower it appears. 3. At the fixed concentration, the higher temperature: a. has the bigger maximum sedimentation rates of the settling interface b. gets to the stationary phase sooner c. has shallower stationary settling interfaces d. the time when the settling interface appears is independent with the temperature 4. The shape of the container has no effect on the settling mode as the settling interface is always perpendicular to gravity field. 5. If we add salt into the liquid, the stationary settling interfaces of the result will be higher than non-added ones.本研究的目的在於探討味噌這樣的微小黏性顆粒,在靜止液體中的沈澱模式。運用恆溫槽與透明玻璃水槽所建構之恆溫環境透過數位攝影機,以電腦播放軟體於特定時間擷取畫面進行分析。在正式實驗前,進行了穩定性試驗,發現穩定性良好。實驗的結果發現:一、 沈降模式:可以分為四個時期,分別為(一)起始加速期(二)高峰期(三)逐漸穩定期(四)完全靜止期。二、 在固定溫度下,溶液濃度越低:(一) 出現沈降交界面的時間越短且穩定距離距液面越深。(二) 沈降面沈降速率最大值越大且出現的越晚。三、 在固定濃度下,溶液溫度越高:(一) 沈降面沈降速率最大值越大。(二) 沈降交界面完全靜止期出現的時間越短,也就是越快達到穩定。(三) 沈降交界面的穩定距離距液面越淺。(四) 沈降面沈降速率最大值出現的時間與溶液的溫度無關。四、 容器內部的形狀與沈降面的沈降行為並沒有影響,都是成與重力場垂直的水平線沈降。五、 添加食鹽之後最終穩定沈降面比同濃度同溫度的高了許多。表示添加了食鹽對於味噌溶液有阻止沈澱的效果。

葉綠素電池之應用

植物行光合作用時,電子吸收光能後在能階上躍遷,形成ATP,藉此原理,利用葉綠素吸收光能後產生的化學反應,可製作出太陽能葉綠素電池。本研究主要針對萃取葉綠素之方式、葉綠素放置天數、電池電極與電解液之成分、電池的放置環境等變因進行實驗,根據實驗結果,葉子加入酒精後,以研磨方式萃取出的葉綠素再搭配碘液、鋁箔紙、碳棒,能做出電壓:1.136V 電流:0.4mA 電功率:0.4544mW的葉綠素電池。 葉綠素電池裝置的設計不只考量到裝置的可行性,對環境友善且永續也是很重要的考量因素,因此將會從下列面向進行研究:裝置如何防水、裝置的使用期限、裝置的素材是否環保,最後成功做出了一組環保的水上漂浮葉綠素電池,未來會再提高此電池產能並且運用在農漁業上。

平面切立方體內單位立方格數極值之計算

我們先假設有一正方體及一截過正方體之平面,並設正立方體為一k*k*k 之立體。為計算平面截過之單位正立方體個數,我們必須先分別計算各層被切過之個數再將之相加,因此將各層面投影至同一平面,簡化為平面上之問題,並討論其性質/規律,計算平面截此正立方體之個數。如此,便可以一般化數學式計算平面截正立方體個數之問題。接著,用以上方法為基礎,討論各種平面切正立方體之類型,將被平面所截之單位立方體個數以電腦程式算出,觀察數字變化及其性質規則,並找出最大值發生之條件。 We initially supposed that there are a regular hexahedron consists of unitary n × n cubes and a plane which incises the regular hexahedron. To calculate the total number of the unitary cubes incised by the plane, we can first calculate them layer by layer and then sum them up. And further, we project each layer on the same plane, so the three-dimensional problem is simplified into two-dimension. By making use of the character which results from projection, we can easily calculate the number of the unitary cubes incised. Consequently, we are able to calculate them with a general equation. Afterward, we research each circumstance that the plane incises the regular hexahedron on the base of the mentioned methods. Calculate them with self-designed computer programs, and observe the regulation and change of the result. Furthermore, we can find out when it will achieve the maximum.

記憶學習機

一般學生對於學校課程學習的負擔,再加上對本身的自信心不足,往往導致學生自己所「背」的東西不是十分確信是否有真正記進腦中,也常常困擾著他們。因此,引發本小組想設計一個可以自我評測且可以立即得到成績的輔助學習機;在研究過程中,本小組設計記憶學習機不但可以做到使用者自我評測的功能,還可以讓使用者馬上得到檢測的結果並且使用者可以回顧先前成績欄紀錄;記憶學習機經過本小組組員的辛苦孕育下誕生,本小組便拿著「它」讓班上同學認識,雖然「它」不是同學心中的最佳主角,但是同學卻一致認定「它」是『最佳伴讀夥伴』。本作品主要功能有:1.能調整使用者所要求的測試時問。2.該作品能記憶此次測試成績,以便和下次相互比較。3.依使用者的需求選擇中文、英文、數字及遊戲模式做記憶訓練。4.能有立即性的成效及回饋。 Due to the pressure of courses and lack of confidence, many students are often not sure of what they have recited on a lesson previously, which in turn always disturbs and cut down learning confidence of students. To eradicate the obstacles they encounter, we decide to research into this topic. A memory-based learning-aided machine is designed for students to self-evaluate themselves and to get the feedback at once. In the process of development, the memory-based learning-aided machine not only lets users practice the exercise of their own, but also is able to derive the outcomes immediately and retrieve the previous records effectively and efficiently. We strive to make this learning-aided machine at its best performance as possible as we can. Besides, the memory-based learning-aided machine provides the alternatives for the users to answer the question in a way that they like. For example, users can answer questions in English mode, can choose the limit time into test themselves in a time. In addition, the system can expand its material by inputting data into the knowledge base. By our group members' lasting efforts, the learning-aided machine was created, finally. According to the result of experiment that we applied to the classmates, we conclude that the memory-based learning-aided machine is the best assistant and learning partner for the students. We would like to introduce it to classmates and hope they will be interested in using it to enhance their learning motivation and performance.

以重力驅動之微流道細胞分離器

本研究利用一種不需藉外加幫浦,以重力驅動即可自行使液體流且形成層流的系統。因微道尺寸夠小,足以形成層流,再由中入口、出口儲液槽的高度差、毛細現象以及表面張力,驅動流道中的液體、形成流速穩定的層流。由層流的性質得知,死菌只能隨流層前進,而因活菌有運動能力,能自分布於系統中,如此便可將死亡及活力較差的大腸桿菌從中分離,並探討各種影響細菌分離的機制。

達文西橋

本達文西橋的研究乃重新檢視古人對橋之建構力學觀念,此橋是利用多重簡支樑完成,重點在研究搭建時橋的斜面受摩擦力而達成穩定之現象,以及探討完成橋之後,橋身承受重力與固定跨距及接點長度、組數之間的關係。從實驗中,我們探究出以下結果: (1)斜面穩定的條件:當接點長度越小,造成滑脫的臨界角度越大,橋身越穩定。 (2)橋面受力變形而使橋斜面角度下降,而增加橋穩定度。 (3)當接點長度越小,組數越多,橋身形狀越接近拱形時,因內力抵消,整體形變率最低,具有最佳的承重能力。 (4)擴充原雙向達文西橋,至四面橋之架構,且應用至多人手遊之“達文西抽抽樂手遊”。

台灣桃園縣虎頭山的泥裂痕的分析和研究

桃園虎頭山是位於林口台地南端的低海拔(約240~260M)丘陵地,表土層屬於紅土層,紅土主要成分為細沙(直徑>50μm,約佔50%)、粉沙(直徑2~50μm,約佔30%),其餘以黏土為主,加上少量含鐵礦物,採樣地點字圖二中的三聖宮旁的登山步道,其坡面面向東南方,對位處北緯25度的桃園屬於向陽波,經日曬適當時間後所產生的龜裂現象,是我們探討的對象;We have focused the study on the sun cracks found in the Mts.Hu-To are located in the southern part of the Mesa Lin Kou, which are 240m to 260m above the sea level. Mainly red clay, the surface soil is a composition of fine sand(diameter>50μm,up to50%)and silt(diameter>2~5 μm,up to 30%),including clay and a limited amount of iron minerals. The soil sample was gathered at the trail beneath the Hil Gue-Lun(241m,see pic.1)from the southeastern latitudes.

聽聽貝多芬作品的下一代:將碎形及基因演算法應用於數位音樂產生器

本研究整合了碎形圖形的迭代運算方法與基因交配觀念來達到音樂創新,並透過音樂和諧性判別機制來提高創新音樂的悅耳程度。利用基因觀念之交配的方法來解決長短的問題。這個方法是把原始音符輸入後,找出它們的中心點,以這個中心點為準,其他的音符按照一定比例向外延展,成為新的迭代點。再利用這些迭代點,迭代出新的音符。把製造好的音符染色體放置到交配池中,以隨機的方式在交配池中選取其中之一個染色體進行交配的動作,此二音符染色體會交換彼此的基因,產生下一代新的代表音符長短之染色體,隨後以「模仿母體判斷式」來判斷這新一代的音樂是否與母體音樂相似,藉此淘汰掉「不肖的」下一代,而若新一代與母體的相似程度高的話,它的悅耳性相信也會相對提高。最後把這些技術應用於數位音樂創作,以衍生新穎應用與創新的結果。Fractals can be produced by IFS (Iterated Function Systems). By iterative computation of many times, we can obtain the similar graphics. In my research, the methods to generate the iterative algorithms were presented. In addition, I would discuss the regularity and the content as well as the properties of those digital patterns. At last, the advanced application of fractals to digital music pieces was presented. The program took a note of several measure of music as the beginning point, and made the IFS calculations for each new note in each measure. But there was no difference in beats if you just make the IFS iteration. So I changed the beats with genetic crossover method. In this research, the expression of the DNA to each beat of note was adopted. The same way, it took a note as a beginning point. And the system obtained the new DNA from the old notes for new ones randomly. After producing the new pieces of music, I want to know if it is good to listen. So I used the algorithm that checks the simulation to the shape of mother music. If its shape is similar to the mother music, the probability that the new music is pleasing may even increase. That would make a piece of brand new music. What I want to do in this research is improve the multiformity of music and find what the relationship is of ‘good music’ and mathematical algorithms

垂直水柱的成節機制探討

本研究欲探討垂直水柱遇障礙物成節的形成機制。以數位照相機、光電計時器等進行觀測。 實驗結果如下: (一)因往返水柱波速不同,而且節無波腹大幅振動現象,故節不是駐波現象。 (二)細針插入水柱表面時,當針上方超過某長度後,針下方產生V字形震波。但不論針相對水柱的速度是否超過波速,針上方都有節,故不是震波所產生的現象。 (三)根據水波槽模擬實驗,不論木條是否超過波速,木條前方均產生波紋。木條前方的水受到木條推動,往前方加速,因此顯現出波紋了。 我們認為,在水柱中所看到的節,不是震波或駐波,而是相對於木條往前傳遞的波。波源是撞擊物,改變了水柱表面的壓力,而成為波源,水柱的水因受撞擊,某個範圍內流速會小於波速,使得撞擊物前方存在波紋。This experiment uses digital camera and photoelectric timer to discuss the mechanism of causing spouts to form nodes on its surface. Because the downward wave velocity of the spout is different from that upwardand there are no significant vibrations of antinodes, standing waves are not the mechanism of causing nodes. In the experiment of inserting a needle into the spout, we found out that while the needle was inserted above a certain length of the spout, v shaped bow waves emerged. However, no matter the velocity of the needle related to the spout is over the wave velocity, there are always nodes above the needle. Therefore, bow waves are not the mechanism of causing nodes. According to the ripple tank simulating experiment, no matter whether the speed of the wooden stick is faster than the wave velocity or not, there are always waves forming in front of the wooden stick. The wooden stick pushes water in front of it and causes the water to accelerate forward. Therefore, waves appear. We think that the nodes we see on spouts are neither standing waves nor bow waves. The nodes are rather caused by the relatively moving wooden stick. The object, which impacted the spout (wooden stick), changed the pressure of the spout’s surface and became the source of wave. Because of the impact, the velocity of the water current of a certain area became slower than the wave velocity and causes nodes forming on the surface of the spout.