全國中小學科展

一等獎

符合人類視覺觀感之數位影像自動化版調重製技術

『凍』人心『鹹』,『黃』金Style~以冷凍凝膠法創作速成鹹蛋黃之新『蛋』生

蛋黃酥所使用鹹蛋黃來自於鴨蛋鹽漬而成,取出鹹蛋黃剩餘之蛋白因鹽度高,無法再利用只能拋棄相當不環保,本實驗利用將蛋冷凍再解凍以分離出蛋白及蛋黃,蛋白可加工再利用,凝膠蛋黃則可鹽漬成鹹蛋黃。結果發現蛋黃在-18℃冷凍3天可完全凝膠,以30%食鹽水鹽漬40-60分鐘,其鹽度已與市售鹹蛋黃相當。在喜好性感官品評發現,鹹味、口感及整體喜好性均與傳統鹹蛋黃相似。解凍蛋白製成蛋糕在喜好性感官品評發現,色澤及口感評分最高優於新鮮蛋白,在香味及整體喜好性則與新鮮蛋白無差異。速成鹹蛋黃僅須1/10生產時間且蛋白可回收再利用並減少鹹蛋白廢棄物。

你在看哪裡--蝌蚪眼睛位置及其視野之研究

陸域草食性動物的眼居於頭兩側,有較寬的單眼視野以便於逃避攻擊;而肉食性動物的眼居於頭前方,立體視覺較佳,有較好的距離感以捕捉獵物。我們利用Geogebra軟體分析台灣33種蝌蚪頭部影像資料,定位出每種蝌蚪眼睛的相對位置,並以數學幾何方式描繪眼睛的視野範圍。 我們發現蝌蚪眼睛位置可依兩眼距離分為“側位”(23%)、“背側位”(67%)及“背位”(10%) 三種型態。側位兩眼距較大,背位兩眼距較小。蝌蚪眼睛視野則可分為“前視型”(42%)及“側視型”(58%) 二種型態,前視型雙眼視覺區較大,側視型視野範圍較廣。我們將眼睛位置與視野範圍的數據與蝌蚪的棲息環境、食性種類及演化分類等進行相關分析,結果發現:1.眼睛位置與棲息環境有相關,棲息越接近水面,為「側位」;棲息越接近水底或是密閉空間,為「背位」。2.視野範圍與食性種類有相關, 肉食性蝌蚪雙眼視覺角度較大,濾食性整體視野較廣。3.眼睛型態與物種演化關係大部分相符合,同一屬且生態棲位相似者,蝌蚪眼睛型態會相似,如台灣狹口蛙科Microhyla屬4種蝌蚪都是側位型;樹蛙科Kurixalus屬的3種蝌蚪都是背位型;但有些例外,如面天樹蛙眼位與同屬艾氏樹蛙不同,可能與生態棲位不同,而演化成不同的眼位有關。

由溶氧量之變化分析單胞固氮藍綠藻光合韻律之特性

此項研究是用溶氧計連續偵測培養液中之溶氧量,藉以分析固氮\r 單胞藻RF-1 的光合韻律。實驗的結果清楚地看出RF-1 之光合韻律,\r 而且能夠清晰地觀察到其中光合作用、呼吸作用和固氮作用之間的相\r 互關係。研究中還發現:在不進行光合作用時,RF-1 的固氮作用也\r 會停止;另一方面,在有進行光合作用、但是停止固氮作用的狀況下,\r RF-1 光合作用之韻律現象會喪失。這些實驗結果值得未來更深入地\r 探討。報告中也包括了單胞藻PCC6803 的光合韻律實驗,藉以做為\r 有固氮能力與沒有固氮能力藍綠藻之間的對照。The variation of dissolved oxygen (DO) in the culture of the\r unicellular nitrogen-fixing cyanobacterium Synechococcus RF-1\r under diurnal light/dark condition was detected automatically by DO\r meter. The results indicated that the algae exhibited circadian\r photosynthetic rhythm. The results also revealed that a respiration\r rhythm occurred at dark phase when the culture was grown in\r nitrogen-free medium. There was correlation between the rhythm of\r photosynthesis and nitrogen fixation. The nitrogen-fixing activity\r could not be detected if the photosynthesis was stop by cultivated\r under continuous darkness. On the other hand, the rhythm of\r photosynthesis could not persist when the nitrogen-fixing activity\r was inhibited by NaNO3. In order to compare the difference\r between Synechococcus RF-1 and the cyanobacterium, which\r cannot fix nitrogen, the DO pattern of Synechocystis PCC6803 was\r also investigated.

停車就是彈硬幣

在這個科展中我們要研究兩個非常有趣的問題:\r 停車場問題 與 彈硬幣遊戲.\r 停車場問題是這樣的:在一條單行道上有n個車位,編號從1到n。現在有n個司機排成一排要進入停車。但是每個司機都有怪癖,各自有最想要停的位子。他們依序將車子開進單行道,如果想要停的位子是空的,當然停在這個位子。但是如果不巧那個位子已經被停了,不得已只好找下一個空位,姑且停之。但是如果往下找都沒有空位,由於是單行道,司機就只好開走不停了。\r 比如說,如果現在有五輛車,司機的喜好分別是(3,1,2,5,2)。則五輛車都可以順利停車。但是司機的喜好如果是(3,1,4,5,4),有些車就無法停車了。\r 彈硬幣遊戲是這樣的:考慮圓內接正n+1邊形,任意兩點都連線。這正n+1邊形中有一個頂點P是特殊的,每個頂點上一開始都放有一些硬幣(各點硬幣數可以不同)。如果P以外的某個頂點上的硬幣數n個,我們可以對這個頂點進行操作:一次操作是指將這個頂點上的硬幣各分一個給每個其他頂點。點P只在其他點都無法操作時操作。我們不理會頂點P上的錢數,因此這個遊戲可以無限地玩下去。

魔術猜牌-由再生訊息延伸推展猜中比值之研究

本研究是藉由數學手法探討;如何由一疊 36 張四種花色的撲克牌中,尋找出保證可猜中最多張花色的方法。研究過程是以在適當的猜牌時機,以邏輯推理、二進位、分析與歸納 … … 等數學原理與方法,搭配巧妙的策略運用而達到目的。 猜牌方法:先約定好猜牌規則,助手將 36 張牌背圖樣相同但非對稱的撲克牌,以旋轉牌背的方向傳達訊息。在本研究中得出「經由巧妙的猜牌方法保證可以猜中不少於 26 張花色」,並得出「當總張數趨近於無窮大時,保證可以猜中不少於 81 . 07 %的牌,並且證出若僅使用獨立的訊息猜牌,無論任何猜牌方法皆無法猜中多於 87 . 37 %的牌」 · 其中一個猜中多於 80 %的例子是‘「當總張數等於 23006 張時,保證可以猜中不少於 1 8405 張牌(18405/23006 > 4/5)」 ·The study is mathematically based with reasonable explanations behind it. We are to correctly guess as many cards as possible from a deck of 36 cards, with random numbers and four different suits. We will apply mathematical methods, such as logic inference, binary system, and analytical reduction, upon right timing. Using careful arrangement of the principles and reasoning, we can reach our ultimate goal. To state guessing: Conference between the guesser and the assistant about the guessing rules, the assistant will have 36 cards with the same exact pattern on the back but not symmetrical. The pattern of the cards will be different when rotated 180o. The only communication between the two is by rotating cards. In this study, we can prove that through mathematical method, we can assure 26 or more cards can be correctly guessed. Furthermore, when the total amount of cards is close to infinity, we can assure 81.07% or more of the cards can be correctly guessed, and prove that if the cards are guessed from independent information, no more than 87.37% of the cards will be correctly guessed by any guessing methods. One of the examples, which 80% of the cards are correctly guessed, is that when the amount of the cards is 23006, 18405 or more of the cards can be correctly guessed. (18405/23006 > 4/5)

Complicated reproductive system in the Brown-foot Ant, Technomyrmex brunneus. (Hymenoptera: Formicidae)

本研究主要針對棕色扁琉璃蟻的生殖型蟻以及其生殖行為進行探討。在生殖季節中,處女蟻后出現的比例明顯高於有翅型雄蟻。而蟻后的死亡率高,且其所產下的卵有27%為畸型卵,具有生殖衰退(reproductive decline)的現象。此外,部分棕色扁琉璃蟻聚落中,蟻后會被工蟻逐出巢外並進行搬運屍體、搬運廢棄物及覓食等職蟻的行為。 有別於大多數的蟻種,棕色扁琉璃蟻存在著工蟻型雄蟻(Ergatoid male)和具有生殖能力的工蟻。工蟻型雄蟻的外型與氣味皆與一般工蟻相似,羽化後即具有生殖能力,可與聚落中多隻生殖型工蟻行多次交配(multiple mating);而可生殖的工蟻又包含三種中間階級(intercaste),於體長、複眼數目、胸線皆有所差異,微卵管數目則可依階級分為4至6條、12至14條、18至22條三種範圍。 棕色扁琉璃蟻的繁衍方式是多樣且複雜的:聚落中主要由生殖型工蟻進行有性生殖及孤雌產雌,繁殖出蟻后、工蟻和二種型態的雄蟻。而蟻后則可與有翅型雄蟻交配,但只產出一般工蟻及生殖型工蟻。 本研究首次提出了棕色扁琉璃蟻具有工蟻型雄蟻,而對這種具有複雜生殖方式的社會結構之探討,也為聚落發展的方式提供了一個新的研究方向

A Novel Contrast-Enhanced Brain Mimicking Hydrogel for Testing Implantable Brain Electrodes

Paralysis is a debilitating disorder that does not currently have safe and effective treatments. Implantable brain electrodes can be used to read brain waves and convert them into a corresponding motor function to restore movement in paralyzed patients. Tissue deformation induced around the implant site is believed to reduce their viability through the foreign body response. Developing electrodes that minimize deformation is challenging because the mechanical aspects of deformation are not fully understood and non-animal tissue models for testing electrodes are unavailable. Development of pre-clinical models for in vitro testing of the mechanical properties of electrodes can lead to a better understanding of this prevalent problem. The objective of this study was to construct a novel contrast-enhanced, brain mimicking hydrogel using photopolymerizable polyethylene glycol (PEG) polymer that contains alginate microspheres with enclosed gadolinium (Gd) contrast agent. 1.5% alginate microspheres were constructed with enclosed Gd-DTPA-BSA contrast agent and successively added into 10% PEG. Then, this mixture was photopolymerized using a 5 mW/cm2UV lamp to result in a successful brain mimicking hydrogel. Rheological testing showed that its elastic modulus was approximately 1.5 kPa, which is similar to that of a normal human brain. The model is valuable because the presence of the contrast agent in the hydrogel resulted in distinct bright spots on the MRI. This can facilitate the visualization of tissue deformation caused by electrode insertion via comparison of pre-insertion and post-insertion images. This brain-mimicking model has the potential to improve understanding of neural deformation from electrode implants in order to assist patients suffering from paralysis.

探討以最經濟的方式偵測低濃度溶液之金屬離子

A novel technology for detection of trace concentration of ions at ppb level was developed. The detection limit of this method can be reached to 1ppb. The Wheatstone bridge usually be used for determination the concentration of metal ion, the major disadvantage of this technique is the precision too low. Atom absorption spectroscopy is better for monitoring trace metal ion, but the cost of instrument is too expensive. In this study, the oscilloscope was used to modify the Wheatstone bridge Circuit. The difference between the voltages of two connection points of Wheatstone bridge was used to estimate the concentration of ions. The amplification system was used in this method to improve the limit to detect ion from 10 ppm to 10ppb. The parameters of measurement including types of probe, match of Wheatstone bridge resistances, parameters of input signal and electrolysis in solution were also being studied. 本研究主要是發展一個富有創新且經濟的ppb ( parts per billion ; 10-9)級,微濃度金屬離子量策技術,目前本實驗設計已可以達到 ppb的偵測極限,尤其本方法不僅能夠應用於定量,尚可做定性偵測。簡易的溶液濃度技術常使用惠司通電橋的方法,但這個方法的缺點在於精確度較低,而另外常用的儀器是原子吸收光譜儀,卻價格高昂。因此,我們回頭對惠司通電橋的技術作改良和創新技術。首先,最重要的新技術是對示波器的改良。示波器被用來量測惠司通電橋的電位,我們比較電橋上兩特定點的電位來判斷濃度,當兩個點的電位相同時代表溶液電阻和控制電阻相同。但當輸入信號的電壓太強時,示波器上並無法判別細微的電位變化,因此造成量測的精度不高。本組設計新的電路用以放大在高強度訊號的波形細微變化,成功將測量極限由 10 ppm推進到 ppb。另外關於此設計中的各種參數,包括探針類型、惠司通電路的電阻匹配、輸入訊號之強度頻率、電極間電容效應及溶液中可能發生的電解效應等,都有精確的探討。最後的設計結果將是創新且有別於以往的設計概念。

黑暗中的光芒-林下植物葉綠體囊膜電池

林下(陰地)植物長期生活在較少陽光的地方,卻依然欣欣向榮。因此,我們針對林下植物的葉綠體囊膜電池做討論,希望可以找出發電效率更高的葉綠體囊膜電池。