全國中小學科展

一等獎

Technical Revival of Traditional Blue Dyeing through Zeolite Catalysis and Electrolysis

透明有機發光元件

本研究以熱激活化延遲螢光(Thermally Activated Delayed Fluorescence, TADF)材料之第三代有機發光二極體(OLED)為主軸,利用吖啶(acridine)作為電子予體、間位及臨位之雙CN苯環(phenylene, Ph)為電子受體,透過有機合成製備DMAC-m2CNPh及DMAC-o2CNPh分子。此外,我們檢測發現DMAC-o2CNPh具有極高的外部量子效率,並將此分子結合透明電極,經由熱蒸鍍製作出透明有機發光元件,探討元件的放光效率及應用性。本研究製作出吸光波長在可見光範圍外的分子,因此蒸鍍在透明基板上後可製作出透明的有機發光元件。將研究成果能應用在生活中,如展示櫥窗顯示新聞、汽車玻璃作為顯示器等,以期能夠提升生活的便利性及運用性。

IlluminaMed: Developing Novel Artificial Intelligence Techniques for the Use In a Biomedical Image Analysis Toolkit and Personalized Medicine Engine

Despite the multitude of biomedical scans conducted, there is still relatively low accuracy and standardization of diagnoses from these images. In both the fields of computer science and medicine there is very strong interest in developing personalized treatment policies for patients who have variable responses to treatments. The aim of my research was automatic segmentation of brain MRI scans to better analyze patients with tumors, multiple sclerosis, ALS, or Alzheimer’s. In particular, I aim to use this information, along with novel artificial intelligence algorithms, to find an optimal personalized treatment policy which is a non-deterministic function of the patient specific covariate data that maximizes the expected survival time or clinical outcome. The result of the research was IlluminaMed, a biomedical image analysis toolkit that relies on the development of new artificial neural networks and training algorithms and novel research in fuzzy logic. The networks can detect patterns more complex than humans can identify and create patterns over long periods of time. IlluminaMed was trained by a dataset of professionally and manually segmented MRI scans from several prestigious hospitals and universities. I then developed an algorithmic framework to solve multistage decision problem with a varying number of stages that are subject to censoring in which the “rewards” are expected survival times. In specific, I developed a novel Q-learning algorithm that dynamically adjusts for these parameters. Furthermore, I found finite upper bounds on the generalized error of the treatment paths constructed by this algorithm. I have also shown that when the optimal Q-function is an element of the approximation space, the anticipated survival times for the treatment regime constructed by the algorithm will converge to the optimal treatment path. I demonstrated the performance of the proposed algorithmic framework via simulation studies and through the analysis of chronic depression data and a hypothetical clinical trial. IlluminaMed can automatically segment the scans with 98% accuracy, find tumors with 96% accuracy and approximate their volume within a 2% margin of error. It can also find lesions in MS and ALS, distinguishing them from tumors with 94% accuracy. IlluminaMed can, in addition, determine the tendency of a patient to develop Alzheimer’s several months before patients develop symptoms correlating the brain structure and its fluctuations. Lastly, the censored Q-learning algorithm I developed is more effective than the state of the art clinical decision support systems and is able to operate in environments when many covariate parameters may be unobtainable or censored. IlluminaMed is the only fully automatic biomedical image analysis toolkit and personalized medicine engine. The personalized medicine engine runs at a level that is comparable to the best physicians. It is less computationally complex than similar software and is unique in the fact that it can find new patterns in the brain with possible future diagnoses. IlluminaMed’s implications are not only great in terms of the biomedical field, but also in the field of artificial intelligence with new findings in neural networks and the relationships of fuzzy extensional subsets.

幾丁寡醣對藍光LED造成視網膜色素上皮細胞傷害的保護作用 The protective effect of chitosan oligosaccharide on blue light LED induced retinal pigment epithelial cell damage

3C產品及LED燈多以藍光照明,長期照射易導致視網膜黃斑部病變。其作用機轉是藍光引起視網膜細胞過氧化物質 (ROS)增加,造成細胞的氧化壓力進而引發細胞凋亡。幾丁寡醣 (Chitosan oligosaccharides, COS) 藉由減少自由基產生和抑制轉錄因子NF-κB傳導路徑而有抗氧化及抗凋亡的作用。 本研究以ARPE-19細胞株,在添加不同濃度的COS下,經照射LED藍光處理後,分析色素上皮細胞活性、ROS表現量及細胞凋亡情形,並透過PCR、西方墨點法、JC-1及免疫螢光染色分析作用機轉。實驗證實COS能抑制過氧化物質 (ROS)的產生,減少視網膜色素上皮細胞因藍光所造成的細胞凋亡。PCR和西方墨點法的結果顯示COS可以抑制發炎介質HO-1、iNOS、Caspase-3、Bcl-2、ERK,及基因iNOS、MCP-1的產生。免疫螢光染色顯示COS能抑制NF-kB核易位。總結來說,COS能藉由抑制NF-kB的活性,減少其下游基因的表現量,降低細胞氧化壓力和發炎反應來避免視網膜色素上皮細胞損傷。COS在臨床上有潛力成為一種預防LED藍光造成視網膜傷害的有效保健食品。

宜蘭外海條狀雨帶成因探討

觀察逐時雷達迴波圖之後,我們發現冬末春初時節,從傍晚到凌晨這段時間,在宜蘭外海是一條狀雨帶的「好發期」,這條狀雨帶並非由鋒面或其他已知的天氣系統引起,故我們想研究這條狀雨帶強度與其氣候環境間的關係。前人的研究中,並沒有研究宜蘭外海的條狀雨帶,不過,從其他研究類似的條狀雨帶的參考資料中,我們發現大部分的研究認定條狀雨帶的成因,都是由風場輻合所引起,因此,我們想研究是否還有其他促使條狀雨帶形成的原因。先定義出條狀雨帶常出現的範圍,挑出有出現條狀雨帶的時數,並利用軟體Extract Color擷取每ㄧ張圖片中條狀雨帶的像素,藉此將範圍中的回波訊號量化。整理向中央氣象局收集來的氣象資料(風向、風速、氣溫、海溫),與回波訊號的量化數據做對照。結果我們發現,以風的輻合輻散來看,當風的輻合量愈大時,此雨帶也愈明顯;以溫差來看,海溫與氣溫的溫差愈大,此雨帶愈明顯。

Discovery, Cloning and Recombinant Expression of a Coral Peptide with anti-Bacteria activity

Inflammatory Bowel Disease (IBD) is a prevalent disease of the West which pathogenesis is driven by a combination interaction between bacteria and inflammatory cells. In this study, two Kazal domain peptide from Palythoa Caribaeorum were identified. They were found to exhibit serine protease inhibitory, anti-bacterial effects and low toxicity, making them ideal candidates for IBD treatment due to their ability to inhibit inflammatory cell migration and bacterial load. We amplified their coding DNA sequences via PCR and ligated the resulting PCR product into pGEX-4T3 vector. The recombinant plasmid was verified by sequencing, and restriction digest before being transformed into competent E.coli cells. Following transformation, we induced target peptides expression by IPTG to confirmed successful transformation and peptide production. Selected transformed bacterial colonies were expanded in LB broth before mixing with glycerol and frozen in -80°C freezer to complete the process of cell bank production.

層出不窮的彩蛋有「心」「跡」—圓內接與外切多邊形及其遞延圖形性質探討

本研究從Brianchon定理「圓外切六邊形三條對角線共點」以及Pascal定理「圓內接六邊形三組對邊延長線交點共線」,這兩個對偶定理出發,試圖以雙心六邊形串連兩個定理,讓Pascal (1623–1662)及Brianchon (1785–1864)兩位法國數學家「相遇在21世紀」。本研究除了探討雙心六邊形的共點共線問題外,更進一步研究其共點共線圖形的軌跡。研究有更驚人的發現:雙心六邊形將各邊延長取交點,其所形成的新六邊形同時內接於一條圓錐曲線,外接於另一條圓錐曲線。

含雙尿素螢光分子之自組裝與能量轉移行為研究

由於奈米科技與OLED相關工業的蓬勃發展,近來設計出應用於電子元件的有機分子已成為一項熱門的研究主題。本研究合成出兩種分別可以放出藍色與綠色螢光的有機分子,化合物 1 可以放出藍色螢光,而化合物 2 則可以放出綠色螢光。這兩個分子都是由中間的核心共軛分子與兩側的雙尿素辨識基團所組成。 我們所合成出的化合物 1 之放光波長與化合物 2 之吸收波長有重疊,因此可以觀察到兩分子在奈米尺度下之有機溶劑中的能量轉移,即激發化合物 1 使其放出藍光後,能量傳遞至化合物 2 ,使藍光被淬熄並產生綠色螢光。另外,此二分子皆具有π-π作用力、氫鍵作用力與凡德瓦力,而在不同的溶劑下可以強化或弱化這些作用力,從我們的研究成果中,分子可以在四氫呋喃中轉變成直徑約400 nm的均勻奈米球型結構,並且能在顯微鏡下觀察到其奈米尺度下的能量轉移行為。 根據這兩種有機螢光分子的光物理性質與自組裝能力,在未來的發展與應用中,我們希望能使用在OLED顯示器與可撓式面板上。

"癌"究-小花蔓澤蘭

外來入侵種小花蔓澤蘭繁殖速度太快,使台灣本土生態系受到嚴重破壞。我們研究發現,小花蔓澤蘭葉和根莖具有保護自由基誘發劑AAPH誘導紅血球溶血及清除DPPH自由基的能力。小花蔓澤蘭葉和根莖總多酚含量可達51.6及20.9 mg/g,推測其所含多酚化合物可能是抗氧化活性的來源。抗癌研究發現,小花蔓澤蘭葉和根莖會誘導人類急性骨髓血癌(HL-60)細胞毒性(24小時IC50為129及203 μg/mL)。顯微鏡觀察下,血癌細胞有減少和皺縮現象; TUNEL試驗法發現,血癌細胞DNA斷裂; 西方墨點法發現,Caspase-3蛋白增加、Bcl-2蛋白減少、Bax蛋白增加及PARP蛋白裂解; 推論小花蔓澤蘭可能誘發血癌細胞凋亡。裸鼠移植腫瘤模式證實,小花蔓澤蘭確實具有抑制活體血癌腫瘤及誘導血癌細胞凋亡之功效。總結,小花蔓澤蘭具抗氧化及抗血癌功效,可開發成為預防自由基疾病及抗癌的保健食品。

魚能發電之開發及應用

「魚能發電」是全新的能量擷取研究,讓魚類游動變成電能。海洋魚類生態研究著重在魚類追蹤,傳統追蹤器受限於電池容量無法長期追蹤,故以魚類追蹤器為目標,以流體分析軟體ANSYS模擬三維流場不同水流速度與形變量,找出追蹤器的最佳設計為前端鈍體為「正三角柱加尾翼」。 透過自製大型文氏管,將迴流水槽原僅每秒0.6公尺流速提高9倍達每秒5.37公尺,是目前台灣壓電發電水流實驗的最高流速。並透過快速傅利葉轉換及自製微電能整流儲能模組,獲得水流速度之頻率特性、發電量上升率,得到許多寶貴的研究數據。 本研究提出創新的壓電陶瓷軟性固定法,有效解決傳統迫緊固定易斷裂及防水問題,讓壓電陶瓷能應用在「魚能發電」;亦自製微電能整流儲能模組量測電能、仿魚尾鰭之不對稱尾翼,獲得最高發電量10μW,是魚類生態追縱新里程碑。