全國中小學科展

一等獎

Hay Aliens

The purpose of my project was to prove if the seeds of invasive plants are spread throughout the Peace region in hay harvested by local farmers. Invasive plants are so dangerous because they adapt to their environment fast and some of them can cause harm to both animals and humans. Within a year they can completely wipe the ecosystem out of native plants. Many invasive plants are either poisonous or can affect the systems of the animals body’s. I collected 22 hay samples from local farms around the North Peace region. I conducted a survey to help collect information about the samples. A pretest was conducted to determine which of two homemade sifters (one with three layers of decreasing size wire mesh, and one with 6 layers of materials with larger size holes) was the best for sifting through hay. I was able to determine that the larger sifter was easier for sifting hay. I sifted through all 22 samples with the larger sifter. I individually looked through each layer and removed what I believed to be seeds. Each seed was individually bagged, labeled, and photographed through a microscope. After each seed was photographed they were planted to help identify the seeds. I contacted a seed specialist. I was able to send him the images of my seeds. He helped me to identify my findings. I removed a total of 5568 potential seeds in my 22 samples. Out of all the potential seeds found 628 seeds were invasive. All invasive plants identified either cause pain to animals or they easily over take the native plants.

吸收紫外光之透明有機薄膜太陽能電池

透明有機薄膜太陽能電池,有別於目前市售深藍黑色太陽能板,因其吸光範圍在不可見光區,使其外觀呈透明無色。若發展得當,便可應用在日常生活中,將玻璃更換為透明有機薄膜太陽能電池,廣泛利用再生能源。 本研究中,我們以旋環雙芴為主體,分別引入二苯環胺基、1,3,4-噁二唑雜環,合成 D2、A2分子作為透明有機薄膜太陽能電池的主動層。測量其溶液態的基本性質後,發現 D2、A2的吸收波長皆落在紫外光區。作為有機太陽能電池元件的主動層,不論是 D2 和 C60 搭配,或是 D2 和 A2 搭配,皆具有極佳的穿透度,並且太陽光下光電轉換效率最高可達0.52 %,弱光下的光電轉換效率可高達15.6 %。

以奈米銦顆粒或鈉離子修飾竹子導電作為新型熱電材料之研究

熱電材料的條件為導熱差,電導率高的材料,此特性可將熱能轉換成電能,為一新興的再生能源。竹子生長快,為一導熱差的材質,但電導率低。本實驗將野生孟宗竹加工裁切,浸泡於飽和食鹽水加上奈米銦顆粒(73mg/ml)環境中,以高壓蒸氣(121℃、1.1 atm/cm2)處理40分鐘後測量處理前後其電阻變化、增加兩端溫度差及電壓改變的電流密度、增加溫度改變的電流,及熱導率等,並以複式顯微鏡觀察,確認奈米銦顆粒的確有進入竹子維管束內。實驗結果顯示,以飽和食鹽水及奈米銦顆粒高壓蒸氣法處理的竹片,相對於對照組,電導率上升了約1706倍,但熱擴散度只上升了約10%,熱電優值(Thermoelectric Figure of Merit) ZT為 0.059。本實驗方法有效提升竹子的電導率,證實竹子是一個有潛力的新興熱電材料。

Novel holdfast marking behavior found in Seahorse

棘海馬 (Hippocampus spinosissimus) 經飼養觀察首次發現排放標示物行為。標示物標記偏好的棲枝,為海洋珊瑚礁魚類中類似的標示的新發現行為。觀察棘海馬會由泄殖腔孔排放一種白色的標示物,其成分鏡檢證明與棘海馬的排遺無關,且其更容易在水中漂流並黏附在棲枝上。棘海馬利用嗅覺幫助尋找含標示物的棲枝 (卡方值 : 24.183, P<0.001)。棘海馬不會傾向攀附有其他海馬標示物的棲枝,無論相同性別間或異性間,均未達顯著水準。標示物中有效成分為水溶性物質,其效能在室溫下可維持約7天,且冷藏可延長其標示效能。經由解剖觀察,證實標示物的分泌器官為泄殖腔中的生殖腺,但生殖腺切片中證明標示物分泌與棘海馬繁殖無關。

紙電路印刷機研發及其運用於教學之可行性分析

本研究為紙電路印刷機之研發,我們將紙當成電路板的基材,以銅箔與銀箔為佈線的導電材料,透過自行開發的機台研究銅箔與銀箔在製作時,所需的時間、溫度、壓力、印刷電路完成度、耐流值與耐熱值等因素,來驗證我們研發的紙電路印刷機適合用於學校實習課程教學,培養學生LAYOUT的能力,同時也在獲得數值曲線的關係式之後,再加以製作更大作業面積的機台,以期能製作出更大的電路,而整個研究除了自行開發儀器及數據驗證外,亦可以把學生實習課程融入環境保護的概念以及文創商品整合的知識。

星系演化? 剖析巡天資料庫驗證星系顏色與紅移關係

透過研讀論文Strateva et al. (2001;簡稱S01),開啟了我們對於星系的星等、星色考量紅移情況下之關係的興趣,並展開以下研究。S01利用Sloan Digital Sky Survey (SDSS)所提供的測光數據,首次依據顏色u*-r*,將星系解析為偏紅以及偏藍兩個族群。本研究藉由SDSS最新提供的光譜資料進一步取得精確紅移數據,經由 K-correction復原靜止坐標系中各星系的星色,並可透過距離模數消除距離對於星系亮度的影響。因此,本研究得以分辨出兩類星系族群的紅移演化。我們發現紅移效應和星系本質的特性對於 r*<17.77且z<0.3的星系有顯著的影響。在研究目標範圍內,兩類星系族群皆沒有發現紅移演化對於顏色的影響。本研究也與 S01作比較,討論了分析中可能的誤差來源。

An investigation of the inhibitory potential of Dronedarone on CYP2J2 mediated astemizole metabolism

Dronedarone is an anti-arrhythmic drug approved in 2009 for paroxysmal and persistent atrial fibrillation. It is less toxic than its predecessor Amiodarone as it does not cause systemic toxicity but has the same pharmacological activity. However the administration of dronedarone to permanent AF and heart failure patients leads to increased risk of stroke and cardiac death. The exact mechanism of the toxicity is currently unknown. Extrahepatic Cytochrome P450 enzymes play a dominant role in organ-specific drug metabolism and toxicity. Cytochrome P450 2J2 (CYP2J2) enzyme, a predominant enzyme found in human cardiac myocytes, metabolizes endogenous arachidonic acid (AA) into epoxyeicosatrienoic acids (EETs) which play an important role in maintaining normal cardiac physiology. Inhibition of CYP2J2 and perturbation of AA metabolic pathway could result in exacerbation of cardiac failure. This research aims to find out whether dronedarone inhibits CYP2J2 in a suitable cell model (H9C2) using astemizole as a probe substrate. Our in-house studies using recombinant CYP2J2 enzyme have shown that dronedarone potently inhibits CYP2J2. Rat myoblast cells (H9C2) will be seeded in 12-well plate and differentiated for 4 days. The cells will be then treated with different concentrations of astemizole and incubated for 24 h. The cells will then be harvested, lysed, and the cell lysate will be analyzed using liquid chromatography-mass spectrometry (LCMS). Using multi-reaction monitoring (MRM) on the LCMS, astemizole concentration as well as its CYP2J2-specific metabolite O-desmethylastemizole concentrations will be measured. The presence of O-desmethylastemizole confirms the metabolism of astemizole by CYP2J2 in H9C2 cells. By plotting a Michaelis-Menten kinetics curve, we will be able to determine the Michaelis constant (KM) and maximum rate of reaction (Vmax). H9C2 cells will be then treated with fixed concentration of astemizole while varying the dronedarone concentration. A decrease in metabolite O-desmethylastemizole conce ntration, indicates inhibition of CYP2J2 metabolism by dronedarone. Using this data, Lineweaver-Burke graph will be plotted, to determine the mode and potency of the inhibition. Our preliminary studies showed that the KM value was 2.7μM. This study will be useful in understanding if dronedarone inhibits CYP2J2 which may lead to clinically significant drug-drug interactions, one of the dangers of polypharmacy. Finally this study will shed a new light on the mechanisms for dronedarone mediated cardiac failure exacerbation.

Neolema ogloblini- An agent in the biological control of Tradescantia

Tradescantia (Tradescantia fluminensis) is the worst weed in New Zealand. By smothering and shading out seedlings, Tradescantia prevents forest regeneration. Current control methods are ineffective and simultaneously cause harm to native forest. In 2011 Neolema ogloblini, a Brazilian beetle was introduced into New Zealand as a biological control for Tradescantia. To be successful in New Zealand, a country with different environmental factors, the beetles’ ranges of preference (temperature and light intensity) had to be investigated. A gender specific trait also identified, to enable desired sex ratios within founding populations to be selected. [18] This would ensure that the beetles are not released in areas of physiological stress, and can be optimised to have the greatest impact on Tradscantia. To establish how the intensity of light affects the distribution and amount of Tradescantia eaten by N.ogloblini a choice chamber investigation was conducted. Different layers of shade cloth provided a range of light intensities 150-3450Lux (likely to be found under forest canopy where Tradescantia is problematic). Thirty beetles of a range of sizes and approximately same maturity were randomly distributed through the chambers. Each chamber contained a shoot of Tradescantia with 5 leaves. After a 24hour period the number of beetles in each chamber were counted and the amount of surface area of the leaves eaten measured. The effect of temperature on the amount of leaf surface area eaten was investigated by selecting 90 beetles of a range of sizes and withholding food for 24hours. Five beetles were placed in each of three containers containing two leaves. Each trial container was precooled/warmed to the test temperature before the beetles were added. Leaves of a similar size, shape, mass and maturity were used. All leaves were genetically identical and collected from the same location. Sets of three containers were held in the dark at the following temperatures for 24hours: 9°C, 15°C, 20°C, 25°C, 30°C and 35°C. The surface area of leaf eaten at each temperature (mm2) was calculated. Lastly, microscopic dissections were conducted, using 32 beetles ranging in size, to establish if length (measured from the top of the head to the base of the abdomen) could be used as a phenotypic marker to identify beetle gender. While only a very weak positive relationship between increasing light intensity and the number of beetles was found a significantly higher area of leaf was eaten at a light intensity of 3450Lux compared to 150Lux. The amount of leaf area eaten is significantly reduced at temperatures of 15˚C and below, and significantly increased at 35˚C. There is no significant difference in the amount of leaf area eaten when comparing temperatures between 20-30˚C. Females have on average a larger body length (median=4.92mm) than the males (median=4.215mm). Therefore, sites with warmer temperatures in dappled light conditions (3450Lux) should be prioritised for the release of N.ogloblini, as this is the location in New Zealand at which their use as a biological control will be optimised. Beetle length can be confidently used to select desired gender ratios.

Reactivity of styrylmalonates as synthetic equivalents of Donor–acceptor cyclopropanes with aldehydes in the presence of BF3•Et2O

Donor–acceptor cyclopropanes (DACs), which can act as sources of 1,2- and 1,3-zwitterions in the presence of Lewis acids, are widely used in organic synthesis for the preparation of various carbo- and heterocyclic compounds, including natural compounds and their analogues. To date, many types of DACs reactivity have been identified. However, the chemistry of styrylmalonates (isomers of DACs, which can be easily generated from DACs) is almost undescribed and has a powerful synthetic potential. The use of styrylmalonates as synthetic equivalents of DACs allows us cardinally change the known reaction pathways of DACs. In this work, a new strategy for cascade assembly of substituted pyrenes based on the reactions of styrylmalonates with aldehydes in the presence of BF3•Et2O has been developed. Generation of formal 1,2-zwitterionic intermediates owing to complexation of dicarboxylate groups with BF3•Et2O is the driving force of the reaction discovered. This method makes it possible to assemble pyrenes or 5,6-dihydro-2H-pyran-2-ones in one synthetic stage from readily available starting compounds with high regio- and diastereoselectivity, and use these pyrenes in futher reactions. We’ve optimized conditions of the reaction and synthesized a number of various substituted pyrenes. Moreover, the reaction shows good results with various aromatic and heteroaromatic substituents. Pyrenes can be easily purified by crystallization. Every product was obtained selectively and determined by full set of physical-chemical methods, including X-ray analysis. 5,6-dihydro-2H-pyran-2-one skeleton is found in various natural compounds demonstrating a broad spectrum of biological activity, such as antiviral and antineoplastic.

永恆的旋轉木馬

本研究作品主要在探討「平面上各種曲線內關於相鄰等角割線段的新的不變量」與「空間中特殊圓錐曲面的特殊等角割線段的新的不變量」。 若圓錐曲線、蚶線等曲線中有相鄰等角的 條割線段,則這n條割線段之m次方和為定值。在圓錐曲線中這些割線段的交點可以是焦點、曲線內任意點,在蚶線中則為基點。甚至經由反演,還能將此性質推廣至直線上。 研究最後擴及至空間,先考慮特殊橢圓、拋物、雙曲球面,其一焦點為F,將正N面體VN之重心G與F重合,使得VN以F為旋轉中心任意旋轉,此時由F對VN之各頂點做射線交圓錐曲面於 PN,則FPN之倒數m次方和為定值,其中u=1,...,n,N=4, 6, 8, 12, 20 。