Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired
The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed.
Evaluation of a fiber optic distributed temperature measurement system for a geothermal energy
As part of the European project GEOTHERMICA - ERA NET and in order to assess the capacity of heat storage in Switzerland, the Centre d'Hydrogéologie et de Géothermie de l'Université de Neuchâtel (CHYN) is taking part in the HEATSTORE project, launched in 2018. The latter is expected to lead to commercial heat storage projects in the near future in Geneva and Bern, in fractured aquifers. The evaluation of the geological characteristics of these aquifers is essential to understand the thermal energy transport processes of fractured aquifers. For this, it is necessary to be able to measure the temperature distribution along boreholes. Thus, the study focuses on the evaluation of a distributed temperature system (DTS) and its optical fiber in order to determine its operation, limits and potential for use in geothermal energy. Laboratory and field tests have been carried out that the water temperature deviation measurements, with a scan time of 30 s, are reliable at less than 0.5°C at +/-5 m over 500 m of fiber. For absolute temperature values, however, a bath and a reference probe must be used to recalculate the absolute temperature to within 0.5°C. The acquired data are essential for a broader understanding of the locations of fractured and karstified aquifers at Concise, allowing the system to be used to better understand the potential for water storage at a depth of 45°C at 35 m.
Silver Moringa Cloth: Silver Nanoparticle Fabric Based on Moringa Extract (Moringa oleifera) as Antibacterial Against Methicilin Resistant Staphylococcus aureus
Staphylococcus aureus is addressed as one of the most common pathogens in hospital settings and in the community. This pathogen causes invasive infections, sepsis, and death. The emergence of antibiotic-resistant bacteria is due to bacterial mutations and the use of antibiotic drugs that are not by procedures. Resistance makes MRSA infections difficult to treat, resulting in high healthcare costs. These problems lead to an urgent need to find alternative drugs to control MRSA infection. Therefore, developing new drugs and procedures such as antibacterial nanoparticles, are particularly promising. Indonesia has many medicinal plants with antibiotic activity, including Moringa oleifera. Moringa oleifera contains several active compounds such as alkaloids, flavonoids, and saponins which are known to have antibiotic activity. Silver nanoparticles or AgNPs are currently used as antimicrobial agents because they are toxic to prokaryotic cells (bacteria) but relatively safe for eukaryotic cells. AgNP synthesis mediated by M. oleifera extract has the advantages of being non-toxic, pollution-free, and environmentally friendly. Sisal is a potential source of naturally derived fabric and a prospective source of multifunctional textiles. Recent studies have utilized and functionalized sisal to develop composite materials. However, functionalizing of sisal using nanosilver-based materials has not been studied yet. Bioactive chemicals from plant-extracted nanoparticles also provide additional antimicrobial properties. This study aims to produce AgNPs mediated by M. oleifera leaf extract and to analyze its antimicrobial effect on MRSA growth. The powdered Moringa (4g) was boiled with 100 ml of distilled water (550 C) for 15 minutes. The mixture was filtered through Whatman No 1 filter paper and store refrigerated. The nanoparticle was synthesized by rinsing sisal fabric cloth to several concentrations of AgNO3 (1mM, 10mM, and 20mM) with Moringa extract. Nanoparticle synthesis from AgNO3 done with the help of Moringa oleifera extract. The resulting AgNPs have MIC values (Minimum Inhibitory Concentration) and MBC (Minimum Bacteriocidal Concentration) of 1.25 mg/ml. The resulting silver nanoparticles showed antibiotic activity against MRSA with an average inhibition zone diameter of 15.677 mm. XRD and SEM studies are going to be held to support the data.