全國中小學科展

三等獎

A Novel Selection Process for the Conversion of Conventional Bacteria into Electrotrophs

The redox reactions of bacteria metabolism have been extrinsically studied. These mechanisms allow certain types of bacteria to be able to synthesize extremely valuable extracellular byproducts. Other types of bacteria are able to extract toxic metals from water by donating electrons directly to those aqueous metal ions, thus turning them into solid precipitates. However, the problem of these microorganisms is that their efficiency rates and production speeds are exceptionally low. This study focuses on the properties of electrotrophs, which are bacteria that can feed on pure electrons directly from an electrode (Rabaey et al 2010). Compared to normal organic-feeding bacteria, electrotrophs direct the majority of the electrons obtained to the production of metabolic byproducts (Nevin et al 2010). Therefore, when electrotrophs are employed in bioelectrochemical systems (BESs) their metabolic redox reaction efficiency rates are dramatically increased. This makes it possible to produce large quantities of valuable compounds such as hydrocarbons, plastics and medicine or efficiently remediating the environment (He et al 2016). Moreover, the usage of electricity as an energy source compared to conventional organic substrates is immensely cheaper (Rabaey et al 2010). However, not all bacteria are electrotrophs nor do all electrotrophs have favourable metabolic traits. Thus, there is a need for a novel procedure to turn conventional bacteria into electrotrophs which is a crucial step to making the BES an aggressive competitor in the sustainable energy industry.

新興汙染物銦對阿拉伯芥生長之影響 Physiological and Molecular Response of Arabidopsis thaliana to Indium Exposure

銦之化合物常被應用於半導體產業當中,隨著使用量的增加也提高銦污染流佈於環境的風險,若此污染物流布至土壤並累積於植物體內,則可能通過食物鏈而影響人體的健康。現今國內外鮮少有銦對植物影響的相關研究,因此本研究以培養基試驗,探討銦對模式植物阿拉伯芥生長之影響。結果顯示,當銦處理濃度為500 µM時,其生質量以及根長會受到抑制。MDA含量的增加,顯示銦會對阿拉伯芥造成氧化逆境,而穀胱甘肽與金屬螯合素並非阿拉伯芥在銦逆境下主要的抗氧化機制。本研究亦發現銦處理下會影響對錳、鉀、鈉、磷、鐵、錳、銅以及鋅的吸收。此外,X光吸收光譜分析顯示根部以及地上部中銦物種有明顯組成上的差異。於根部有42.9%的銦是以吸附於細胞壁的形式存在,這可視為植物對重金屬所採取「隔離」策略的防禦方式之一。

翻轉塗色

長度為n的字串,我們設計了對偶塗色,目的在減少同色字串出現的周期規律。而計算這樣的字串中存在多少同色的3-AP。 利用對偶塗色字串的特殊對稱性質,我們先將其中的同色3-AP分成單獨由字串前半2n-1形成的第I類同色3-AP及部分在前半2n-1部分在後半2n-1的第II類同色3-AP,並以d-中心排列方式重新排列,將第II類同色3-AP分解成較小的子結構,得到遞迴式計算跨越中心的同色3-AP,而得到定理1,計算第II類同色3-AP的數量。 由對偶特性得知,2倍的第I類與2倍的第II類同色3-AP即為長度2n字串中同色3-AP的總個數,由此推出定理2: n階對偶塗色字串中(字串長度2n)的同色3-AP總數為1/16N2-1/12Nlog2N+5/36N,N=2n. 此結果與所有塗色方式中平均存在的3-AP數量相近,第二大項-1/12Nlog2N則與對數值log2N相關。 有趣的是,經由程式計算的結果發現,對偶塗色法中同色4-AP、5-AP的數 量也似乎是平均值。甚至從任給定的字串開始作對偶複合字串,程式計算的結果也是接近平均值。

H.E.L.P. Heart Empowers Lifelong Pacemaker

EXPERIMENT 1---The effect of NaCl and Glucose Concentration on the efficiency of the cell I. Introduction Experiment on different concentrations of standard glucose solution (ranged from 0.125 M to 1.000 M) and standard sodium chloride solution (ranged from 0.250 M to 4.000 M) were done. We investigated the full concentration effect, which included both concentration of glucose solution and sodium chloride solution on the fuel cell’s output voltage, current and power. II. Procedures 1. Add 25.0 cm3 of Glucose solution of the tested concentration to the beaker representing the anode, and add 25.0 cm3 of distilled water to the beaker representing the cathode. 2. Add 50.0 cm3 of 0.250 M NaCl (aq) to both beakers representatively. 3. Fold a piece of filter paper and soak in fully into NaCl (aq) at cathode. 4. Clean and place the silver wires into the beakers representatively, and connect the air pump to the cathode. 5. Connect the cell to two multi-meters, each acting as a voltmeter and an ammeter respectively 6. Take the readings of multi-meters after 30 seconds. 7. Repeat steps 1 to 6 twice for the second and third reading of the cell. 8. Take average value among three values as the final reading of the cell. 9. Repeat steps 1 to 8 by replacing the NaCl (aq) with concentrations of 0.000 M, 0.500 M, 1.000 M, 2.000 M and 4.000 M, and the standard glucose solution with concentrations of 0.000 M, 0.125 M, 0.250 M, 0.500 M, 0.750 M and 1.000 M. III. Result of Experiment 1 When glucose concentration is increased from 0.000 M to 0.250 M, the output power increases, it is found that power generated is maximized at glucose concentrations between 0.125 M and 0.250 M. However, with further increase in glucose concentration from 0.250 M to 1.000 M, the power generated decreases. This shows that high concentration of glucose inhibits the generation of electricity, while higher concentration of sodium chloride solution can increase the output. EXPERIMENT 2---The effect of temperature on the efficiency of the cell I. Introduction In this experiment, the second effect - temperature on the fuel cell’s output voltage, current and power was investigated. In order to get a significant result, the effect of temperature on these measures with fixed 0.250 M glucose solution and sodium chloride solution concentrations varied from 0.500 M to 4.000 M had been investigated. II. Procedures 1. Add 25.0 cm3 of Glucose solution of the tested concentration (0.25 M) to the beaker representing the anode, and add 25.0 cm3 of distilled water to the beaker representing the cathode. 2. Add 50.0 cm3 of 0.500 M NaCl (aq) to both beakers representatively. 3. Fold a piece of filter paper and soak in fully into NaCl (aq) at cathode. 4. Clean and place the silver wires into the beakers respectively, and connect the air pump to the cathode. 5. Connect the cell to two multi-meters, each acting as a voltmeter and an ammeter respectively 6. Take the readings of multi-meters after 30 seconds. 7. Repeat steps 1 to 6 twice for the second and third reading of the cell. 8. Take average value among three values as the final reading of the cell. 9. Repeat steps 1 to 8 by varying the temperature from 42℃ to 32℃. 10. Repeat steps 1 to 9 by replacing the NaCl solution of 0.000 M, 1.000 M, 2.000 M, and 4.000 M respectively. III. Result of Experiment 2 The results showed a consistent trend and relationship of the effect of temperature on the output current, voltage and power of the fuel cell for 4 different concentrations of sodium chloride solution with fixed 0.25 M glucose solution. Generally, the results showed that the output power increases with temperature. EXPERIMENT 3---The effect of dialysis tubing and Nafion 117 on the efficiency of the cell I. Introduction Semi-permeable membrane separating glucose and oxygen, ensure the glucose oxidation only occurs at the anode, and preventing glucose oxidation occurs at the cathode, responds to maximize power output. Experimental study on two kinds of membranes, dialysis membranes and Nafion 117 films were done, by studying their fuel cell output voltage, current and power effects. Previous experiments showed that the optimal output of the battery is at 0.250 M glucose solution, Therefore, experimental conditions for glucose concentration is fixed on 0.250 M and sodium chloride solution concentration varies from 0.500 to 4.000 M. II. Procedures The Effect of Dialysis Tubing on voltage and current of the fuel cell 1. Pour 50 cm3 1.000 M NaCl (aq) to each compartment of the beaker separated by dialysis tubing. 2. Pour 0.250 M Glucose Solution into the compartment representing anode. 3. Connect the cell to two multimeters, which act as a voltmeter and ammeter respectively 4. Take the reading of the multimeters after 30 seconds 5. Repeat steps 1 to 4 twice for the second and third reading of the cell. 6. Take average value among three values as the final reading of the cell. 7. Repeat steps 1 to 6 with NaCl (aq) with concentration of 0.000 M, 0.250 M, 0.500 M, 2.000 M and 4.000 M to obtain the remaining data. The Effect of Nafion 117 on voltage and current of the fuel cell 1. Add 50 cm3 1.000 M NaCl (aq) and 50 cm3 of 0.250 M of glucose solution to the beaker. 2. Add 1.000 M NaCl (aq) to the Nafion 117 membrane pouch, and silver plate was put inside to become the anode. 3. Connect the cell to two multimeters, which act as a voltmeter and ammeter respectively 4. Take the reading of the multimeters after 30 seconds 5. Repeat steps 1 to 4 twice for the second and third reading of the cell. 6. Take average value among three values as the final reading of the cell. 7. Repeat steps 1 to 6 with NaCl (aq) with concentration of 0.000 M, 0.250 M, 0.500 M, 2.000 M and 4.000 M to obtain the remaining data. III. Result of Experiment 3 The result had shown that when the solution does not contain glucose (i.e. Glucose concentration equals to 0.000 M), Nafion 117 Membrane Cells have similar power outputs compared to the dialysis tubing cells. However, in 0.250 M glucose solution, the output of Nafion 117 membrane cell is about 1 to 5 times more compared to that of dialysis tubing cell. According to the experiment results, it was found out that the power output was maximized when the concentration of glucose solution and NaCl (aq) are 0.250 M and 4.000 M respectively. Under this concentration, the out of Nafion 117 membrane cell was 1336.68 nW which was 5 times higher than that of dialysis tubing cell. Hence, adopting Nafion 117 as the selectively membrane can greatly enhance the output of cell. It is believed that the special structure of Nafion 117 has limited the movement of glucose molecules, and prevented their oxidation at cathode. This has enhanced the oxidation of glucose at anode, and thus increased the power output of the cell.

Parallax Modelling of OGLE Microlensing Events

We present a study using microlensing event data from the Optical Gravitational Lensing Experiment (OGLE), recorded in the period 2002-2016 from the Galactic bulge. Our two algorithms are based on the standard point-source-point-lens (PSPL) model, and on the less conventional parallax model respectively. The optimal fit was found for each sample event in the chi-square optimization algorithm, along with the best fit parameters. Out of the 7 best fits, 4 show strong parallax effect. The microlensing fit parameters were then cross-matched with proper motion data from the Naval Observatory Merged Astrometric Dataset (NOMAD), to obtain lens mass estimation for four events. These were estimated to 0.447 solar masses, 0.269 solar masses, 0.269 solar masses and 17.075 solar masses respectively. All masses were within the microlensing mass interval for lenses found in similar studies. In this study, we conclude that the parallax model often better describe long events and demonstrate the importance of utilizing both PSPL fits and parallax fits, instead of only the PSPL model. By varying only 2 of the 7 parallax microlensing parameters instead of all simultaneously, we obtain plausible values for lens direction and lens transverse velocity: a method to investigate microlensing lens properties with no regard to its luminosity. In addition, we also present spectral classes of the NOMAD objects associated with each event, which is vital for future investigations to further confirm mass estimations. We present strategies to further enhance the algorithm to analyze the microlensing event light curve to better find deviations. We also conclude that our double model can potentially unveil the presence of dim lens objects (MACHOs) such as brown dwarfs, exoplanets or black holes.

Interaction of the unsaturated sulfones with azinium ylides

1. Introduction In Japan the energy self-efficiency is very low: only 6%. Hydrogen (H2) has been expected as a new and alternative energy source to imported one, such as petroleum resources. Now hydrogen energy comes into the practical use in the field of the fuel cell. Hydrogen must be extracted from other sources, for example, water, fossil fuel, and so on. Hydrogen is obtained from water by using electronic or thermal or photo energy in most cases, whereas it is well-known that hydrogen is given by the oxidation reaction of silicon in alkaline aqueous solution: Si + 2OH- + H2O → SiO32- + 2H2 Free silicon (Si) is not only used in the steel refining, aluminum-casting in the field of fine chemical industries but also is used as a material in semiconductor electronics. However, a lot of used silicon is thrown away as a waste, being not reused and recycled. In this study we try to apply a waste silicon to obtain hydrogen based on the above reaction. The purpose of the study is to develop a safe and convenient manufacturing method to generate hydrogen for an energy source of the fuel cell.

圓網波攔─圓網結構之振盪模態影像分析

本次實驗探討網面結構不同所造成的振盪模態差異、振動頻率對網面結構振盪的模態差異。 本研究發現,蜘蛛網面的中央絲結構會直接影響到整個網面結構的振盪方式,以及能量散布的情形,希望藉由模態分析進行二維網面的討論。 當初想了解蜘蛛網結構對於分散衝擊力道的影響,為了簡化實驗變因而使用釣魚線進行模擬,所以設計出二維網面結構來模擬蜘蛛網面,並且改良過去的測量方式及振盪方法,加以探討二維網面結構,希望可以利用在生活中的相似抗震結構上。 實驗將觀察整片圓網結構在振盪下的模態能量散步以及傳遞方向趨勢,繪製出等振盪強度圖協助了解振動的分布,實驗結果指出蜘蛛網面的中央絲結構可以減緩振盪,這也是本次研究之後需要更進一步探討中央絲結構以及對能量傳遞的影響。

三角形與其外接錐線的生成錐線性質探討

本研究源自三角形的重心及其外接圓所構作的線段比值的古老幾何性質,我們不但推廣原命題,還創造新命題:給定△ABC與其外接錐線Γ,令直線AG, BG, CG分別交Γ 於 A', B', C' 點,再取任意k值,探討P點集合的性質。 Γ3, k={P|AA'/PA' + BB'/PB' +CC'/PC'=k} (1)Γ3,k為二次曲線系,其橢圓、拋物線、雙曲線之形態不因k值而改變,而是被外接錐線Γ所決定。 (2)發現△ABC重心 G、Γ中心O、Γ3,k 中心O3,k 的共線性及比例常數。 (3)完整劃分 Γ3,k的非退化與退化型態,並發現只有Γ3,k 為橢圓時,k 值有跳躍現象。 (4) 發現錐線Γ上取相異六點而生成兩個錐線Γ3,k、Π3,k重合的充分條件。 最後,我們以「錐線 Γ 上取一點、兩點到多點」的線性組合手法,推廣多邊形與其外接錐線的生成錐線Γn,k之性質。

An optimal-route algorithm for an intermodal Metro Manila trip planners using multiple parameters

Parameters of traffic, road availability, and fare were integrated into a web-based application for determining the best public transport routes within Metro Manila in order to assist commuters in their travel planning, whether for business or for pleasure. A user-friendly interface was developed to obtain a user’s place of origin and destination, as well as preferences in travel time, mode of transportation, and cost of journey. By accessing the traffic roadway network of the metropolis, a real-time situation of road availability was obtained, and used in a modified Dijkstra’s shortest-path algorithm to produce a model of a real-time adaptive transport network of Metro Manila. From the model, an optimal route that considers the user’s preferences can be determined. This project will be immensely useful in helping both businessmen and tourists in planning their routes that will save on time and money.

從A到B再到C―從組合數學觀點及生成函數來看Avoid數列及其多項式組合係數B

對於排列組合數學中避免特定序列的方法,是一個已經提出很久的問題,而對於長度為n,避免同一物連續出現兩次的方法,俄國學者Tanya Khovanova [1]提出一遞迴式。既然知道避免同一物連續出現兩次的方法數,那避免同一物連續出現m次的方法為何呢? 在去年的臺灣國際科展「從Avoid數列到類巴斯卡三角形」我令其方法數為A,計算其遞迴關係,並寫成以B為係數的多項式,計算B的遞迴關係。 為了計算B的一般式,今年我的研究過程: 1. 今年不同於去年的臺灣國際科展,重新以較直接且簡單的排列組合證明避免同一物連續出現m次數的方法數A之遞迴式 2. 同1.,重新以排列組合證明B的遞迴式,並找出選取個數小於m時之一般式 3. 以生成函數計算B及A,並計算B的一般式 4. 發現B的大小隨著選取個數接近常態分佈