VERMICOMPOSTING-EFFICIENT DAIRY SLUDGE MANAGEMENT
The continued growth of dairy farming in NZ and the move toward keeping cows on stand-off pads has seen a major increase in two significant waste streams, the wood fibre that is scrapped off the surface of the standing pads and the effluent that is now concentrated at the site of these pads. In combination these waste streams offer the farmer an opportunity to recycle valuable nutrients back into the soil as an up-valued soil conditioner. This investigation explores vermicomposting as a tool to efficiently manage these two significant waste streams. Sludge was removed from a settling pond and mixed with a range of carbon products that are recommended by Dairy NZ for use in stand-off pads: wood chips, post peeling, sawdust and also wood shavings (used in calf sheds). The wood fibre/sludge mixtures were assessed on their acceptability to tiger worms (Eisenia fetida) by measuring the pH of the mixture and seeing if they corresponded with the preferred pH for tiger worms. The vertical spatial distribution of tiger worms was measured over a period of 15 days and the rate at which the worms moved into the different mixtures was assessed. The worm mass before and after this 15 day period was also measured to ascertain the mixtures’ ability to support worm growth. Finally, different ratios of sludge and post peelings removed from a calf shed were used in a choice chamber experiment to establish the worms’ preference. Tiger worms were used throughout the investigation as they represent the worm species most widely used in vermicomposting in New Zealand. Tiger worms feed on decomposing organic matter, bacteria and fungi in the upper organic horizon of soil. All of the unused wood fibre and dairy sludge tested lay within the acceptable pH range for tiger worms. Wood fibre exposed to large amounts of urine ie calf shed post peelings, that lie outside the acceptable range can be favourably adjusted with the addition of dairy sludge. All the particle sizes of the wood fibre tested were found to be acceptable to tiger worms and capable of supporting increase in their body mass beyond that of the compost. Due to the observation that the worms did not integrate themselves as fully in sawdust as the other fibres tested it is recommended that further investigation should be carried out before sawdust is used for vermicomposting. While a comparison of the average worm density in each mixture may indicate a preference for post peelings this cannot be statistically proven and more trials are recommended. The preferred ratio within the limits that were tested is 1:3 calf shed post peelings to sludge (41% dry weight). Vermicomposting can therefore be recommended as a possible onsite technology to process the twin waste streams of wood fibre and effluent generated by dairy farms. The next step would be to implement medium scale field trials with a continuous windrow system, testing resulting compost for its nutrient content and then comparing this output to that of current practises
Fig Preservation
Figs have become an expanding industry here in New Zealand and are a current export fruit which could potentially provide a large amount of profit to both growers and the New Zealand market as a whole. Nicola’s family has about 10 acres of fig trees. They sell the figs locally and as an export. They generally sell for about $13 per kilogram here in New Zealand and $26 in the USA. However, figs only have a shelf life of about 7 days. This is because at present there is no proven pre or post-harvest treatment or method of storage that helps to decrease the rate of decay of the fig fruit. After researching post-harvest treatments for figs, Nicola found a report which claimed to have developed treatments that increased the shelf life of figs by about 5 weeks. With this kind of increase, it would be possible to transport, store and export figs over longer periods of time without running the risk of losing large amounts of produce, or delivering unsatisfactory fruit to customers. Nicola developed 7 different post-harvest treatments based on the ones that had shown promise in earlier research. These were hot-water baths of different temperatures, both with and without different bleach concentrations. To test these on the fruit she set up four experiments – a dry matter test, a firmness test (using a penetrometer), a colour test and observation of detrimental features of the fig. She tested these treatments at 0, 7, 14, 21 and 28 days from harvest. Nicola found that after 7 days, the firmness of all of the figs that had been treated had decreased to a large degree. The only figs that did not have a massive decrease were the untreated fruit. However after about 14 days, the firmness of all of the fruit became about the same and after this 14 day mark, she would not have considered any of the figs to be edible. However, in the appearance tests, it seemed that the treated figs that had the least amount of mould and rot were the ones that had been treated with higher levels of bleach such as the 55 degree Celsius water bath with 0.003L of bleach to every litre of water, and the 35 degree Celsius water bath with the same concentration of bleach. Overall, Nicola’s results showed that the hot water bath, and hot water bath and bleach post-harvest treatments did not slow the decay of the fruit in the earlier weeks after picking. In effect, Nicola’s research showed that the information she had relied on to help plan her study had claimed too much and that the treatments were less effective than had been stated. More research will be needed to find a more reliable way to improve the shelf life of figs.
H.E.L.P. Heart Empowers Lifelong Pacemaker
EXPERIMENT 1---The effect of NaCl and Glucose Concentration on the efficiency of the cell I. Introduction Experiment on different concentrations of standard glucose solution (ranged from 0.125 M to 1.000 M) and standard sodium chloride solution (ranged from 0.250 M to 4.000 M) were done. We investigated the full concentration effect, which included both concentration of glucose solution and sodium chloride solution on the fuel cell’s output voltage, current and power. II. Procedures 1. Add 25.0 cm3 of Glucose solution of the tested concentration to the beaker representing the anode, and add 25.0 cm3 of distilled water to the beaker representing the cathode. 2. Add 50.0 cm3 of 0.250 M NaCl (aq) to both beakers representatively. 3. Fold a piece of filter paper and soak in fully into NaCl (aq) at cathode. 4. Clean and place the silver wires into the beakers representatively, and connect the air pump to the cathode. 5. Connect the cell to two multi-meters, each acting as a voltmeter and an ammeter respectively 6. Take the readings of multi-meters after 30 seconds. 7. Repeat steps 1 to 6 twice for the second and third reading of the cell. 8. Take average value among three values as the final reading of the cell. 9. Repeat steps 1 to 8 by replacing the NaCl (aq) with concentrations of 0.000 M, 0.500 M, 1.000 M, 2.000 M and 4.000 M, and the standard glucose solution with concentrations of 0.000 M, 0.125 M, 0.250 M, 0.500 M, 0.750 M and 1.000 M. III. Result of Experiment 1 When glucose concentration is increased from 0.000 M to 0.250 M, the output power increases, it is found that power generated is maximized at glucose concentrations between 0.125 M and 0.250 M. However, with further increase in glucose concentration from 0.250 M to 1.000 M, the power generated decreases. This shows that high concentration of glucose inhibits the generation of electricity, while higher concentration of sodium chloride solution can increase the output. EXPERIMENT 2---The effect of temperature on the efficiency of the cell I. Introduction In this experiment, the second effect - temperature on the fuel cell’s output voltage, current and power was investigated. In order to get a significant result, the effect of temperature on these measures with fixed 0.250 M glucose solution and sodium chloride solution concentrations varied from 0.500 M to 4.000 M had been investigated. II. Procedures 1. Add 25.0 cm3 of Glucose solution of the tested concentration (0.25 M) to the beaker representing the anode, and add 25.0 cm3 of distilled water to the beaker representing the cathode. 2. Add 50.0 cm3 of 0.500 M NaCl (aq) to both beakers representatively. 3. Fold a piece of filter paper and soak in fully into NaCl (aq) at cathode. 4. Clean and place the silver wires into the beakers respectively, and connect the air pump to the cathode. 5. Connect the cell to two multi-meters, each acting as a voltmeter and an ammeter respectively 6. Take the readings of multi-meters after 30 seconds. 7. Repeat steps 1 to 6 twice for the second and third reading of the cell. 8. Take average value among three values as the final reading of the cell. 9. Repeat steps 1 to 8 by varying the temperature from 42℃ to 32℃. 10. Repeat steps 1 to 9 by replacing the NaCl solution of 0.000 M, 1.000 M, 2.000 M, and 4.000 M respectively. III. Result of Experiment 2 The results showed a consistent trend and relationship of the effect of temperature on the output current, voltage and power of the fuel cell for 4 different concentrations of sodium chloride solution with fixed 0.25 M glucose solution. Generally, the results showed that the output power increases with temperature. EXPERIMENT 3---The effect of dialysis tubing and Nafion 117 on the efficiency of the cell I. Introduction Semi-permeable membrane separating glucose and oxygen, ensure the glucose oxidation only occurs at the anode, and preventing glucose oxidation occurs at the cathode, responds to maximize power output. Experimental study on two kinds of membranes, dialysis membranes and Nafion 117 films were done, by studying their fuel cell output voltage, current and power effects. Previous experiments showed that the optimal output of the battery is at 0.250 M glucose solution, Therefore, experimental conditions for glucose concentration is fixed on 0.250 M and sodium chloride solution concentration varies from 0.500 to 4.000 M. II. Procedures The Effect of Dialysis Tubing on voltage and current of the fuel cell 1. Pour 50 cm3 1.000 M NaCl (aq) to each compartment of the beaker separated by dialysis tubing. 2. Pour 0.250 M Glucose Solution into the compartment representing anode. 3. Connect the cell to two multimeters, which act as a voltmeter and ammeter respectively 4. Take the reading of the multimeters after 30 seconds 5. Repeat steps 1 to 4 twice for the second and third reading of the cell. 6. Take average value among three values as the final reading of the cell. 7. Repeat steps 1 to 6 with NaCl (aq) with concentration of 0.000 M, 0.250 M, 0.500 M, 2.000 M and 4.000 M to obtain the remaining data. The Effect of Nafion 117 on voltage and current of the fuel cell 1. Add 50 cm3 1.000 M NaCl (aq) and 50 cm3 of 0.250 M of glucose solution to the beaker. 2. Add 1.000 M NaCl (aq) to the Nafion 117 membrane pouch, and silver plate was put inside to become the anode. 3. Connect the cell to two multimeters, which act as a voltmeter and ammeter respectively 4. Take the reading of the multimeters after 30 seconds 5. Repeat steps 1 to 4 twice for the second and third reading of the cell. 6. Take average value among three values as the final reading of the cell. 7. Repeat steps 1 to 6 with NaCl (aq) with concentration of 0.000 M, 0.250 M, 0.500 M, 2.000 M and 4.000 M to obtain the remaining data. III. Result of Experiment 3 The result had shown that when the solution does not contain glucose (i.e. Glucose concentration equals to 0.000 M), Nafion 117 Membrane Cells have similar power outputs compared to the dialysis tubing cells. However, in 0.250 M glucose solution, the output of Nafion 117 membrane cell is about 1 to 5 times more compared to that of dialysis tubing cell. According to the experiment results, it was found out that the power output was maximized when the concentration of glucose solution and NaCl (aq) are 0.250 M and 4.000 M respectively. Under this concentration, the out of Nafion 117 membrane cell was 1336.68 nW which was 5 times higher than that of dialysis tubing cell. Hence, adopting Nafion 117 as the selectively membrane can greatly enhance the output of cell. It is believed that the special structure of Nafion 117 has limited the movement of glucose molecules, and prevented their oxidation at cathode. This has enhanced the oxidation of glucose at anode, and thus increased the power output of the cell.
Parallax Modelling of OGLE Microlensing Events
We present a study using microlensing event data from the Optical Gravitational Lensing Experiment (OGLE), recorded in the period 2002-2016 from the Galactic bulge. Our two algorithms are based on the standard point-source-point-lens (PSPL) model, and on the less conventional parallax model respectively. The optimal fit was found for each sample event in the chi-square optimization algorithm, along with the best fit parameters. Out of the 7 best fits, 4 show strong parallax effect. The microlensing fit parameters were then cross-matched with proper motion data from the Naval Observatory Merged Astrometric Dataset (NOMAD), to obtain lens mass estimation for four events. These were estimated to 0.447 solar masses, 0.269 solar masses, 0.269 solar masses and 17.075 solar masses respectively. All masses were within the microlensing mass interval for lenses found in similar studies. In this study, we conclude that the parallax model often better describe long events and demonstrate the importance of utilizing both PSPL fits and parallax fits, instead of only the PSPL model. By varying only 2 of the 7 parallax microlensing parameters instead of all simultaneously, we obtain plausible values for lens direction and lens transverse velocity: a method to investigate microlensing lens properties with no regard to its luminosity. In addition, we also present spectral classes of the NOMAD objects associated with each event, which is vital for future investigations to further confirm mass estimations. We present strategies to further enhance the algorithm to analyze the microlensing event light curve to better find deviations. We also conclude that our double model can potentially unveil the presence of dim lens objects (MACHOs) such as brown dwarfs, exoplanets or black holes.