Upcycling of Abandoned Beehives!!
Upcycling abandoned beehives to make new products can reuse the useful materials in old beehives and produce less trash. As known that bees leave their beehive in these following situations like insufficient replenishment, frequent unboxing and environmental issues. Then the beehive will be abandoned and will have no use left. In this project, a piece of honeycomb was collected from abandoned beehive and melted in order to extract beeswax. The potential of the extracted beeswax for replacing plastic to produce fillers of 3D pens was studied. Natural materials like seashell, rosin, soy bean and coffee ground were tested as ingredients of 3D printing materials. Finally, the potential of using extracted beeswax in 3D printing was confirmed. Beeswax has a low melting point at around 64°C and solidify quickly at room temperature. The high plasticity of this natural wax fulfills the criteria of 3D printing materials. Biodegradable wastes, like coffee grounds and soy bean grounds were tested as additives for reducing the beeswax content. Sea shell grounds were eliminated from the tested list as its filaments broke into small pieces of brittle fragments during the production process. 5% and 10% of these additives were the optimal formula for making long filaments. Yet, the thin filaments made by pure beeswax were not strong enough, filaments of selected beeswax-soy bean grounds were further strengthened by mixing with 5% or 10% rosin. Among the four different ratios of Beeswax: Soy bean grounds: Rosin (9:1:0.5 / 9:1:1 / 9.5:0.5:0.5 / 9.5:0.5:1), filaments in the ratio 9.5:0.5:0.5 demonstrated better flexibility, higher tensile strength and compressive strength, thus B9.5:S0.5:R0.5 was the final formula of biodegradable beeswax 3D filament.
Utilizing Flavonoids From the Invasive Species Pilea Melastomoides and Daucus Carota as Well as the Protein PTK-2 to Create a Skin Gel Aimed for Burn Wound Healing.
Burns are a major global health concern especially in developing countries like 印尼, where southeast asian women experience the highest burn incidents globally. Burns can cause severe physical and psychological impacts, with treatments that are critical to reduce complications. This study focuses on the development of organic, cost-effective burn gels using flavonoid compounds which are Quercetin and Myrecetin which are taken from pilea melastomoides leaves, a wild 印尼n plant and carrot (Daucus Carota). These skin extracts aim to accelerate wound healing, minimize pain and prevent infection. The gel formation involves extracting active compounds using 96% ethanol as it has been effectively used for extracting a wide range of bioactive compounds to preserve their quality by preventing microbial contamination, and ensures a high yield of active ingredients suitable for topical applications. Then it goes through a process of Phytochemical screening to confirm the presence of flavonoids by using the Shinoda test. The formulation process included dissolving the HPC-m (Hydroxypropyl Cellulose) as a gelling agent, then adding plant extracts (pilea melastomoides leaves and carrot), as well as combining other ingredients such as propylene glycol, sodium benzoate, sodium metabisulfite, and disodium EDTA. The gel was stirred thoroughly to ensure uniformity and left at room temperature for 48 hours to attain the required consistency. The gel that was formatted went under various quality assessments, first being organoleptic testing. This test is used to evaluate its physical characteristics which includes color aroma, and consistency which confirms a stable dark green appearance and a natural strong scent from the plant extracts. The homogeneity test is used to verify the uniformity distribution of active compounds across the gel, to ensure a consistent efficacy. The pH test showed the gel’s acidity level which remained the safe range for skin application. Additionally, the spreading ability test demonstrated the gel’s excellent application properties, with consistent results across trials. Subsequently, the in silico analysis was conducted to predict the behaviour of specific flavonoid compounds used which is the myricetin and quercetin, highlighting their potential anti-inflammatory and antimicrobial activities. Further bacterial contamination tests confirmed the gel’s antimicrobial efficacy, reducing the risk of infection in wounds. This study demonstrates that the gel, formulated with pilea melastomoides leaves and carrot skin extracts, effectively utilizes flavonoids and other phytochemicals to reduce inflammation, promote tissue regeneration and retain moisture, which fosters an optimal condition for wound healing. This organic and sustainable burn treatment utilizes locally sourced ingredients, providing a natural solution that speeds up recovery, reduces pain and prevents infections. The results highlight its significant potential for wider healthcare use, especially in resource-limited environments.
Artificial Intelligence Sensing Technology for Blinds Path Findings
Over 30 million souls live in a world of darkness, a number greater than the populations of both Norway and Sweden combined. Every individual deserves the chance to embark on a journey across our magnificent blue planet. Yet, regrettably, little has been done to assist them. With this project, we’re lighting the way for the blind to explore our beautiful world independently, breaking free from dependence and embracing boundless horizons. In order to put our theory of the project into practice & explore the use of artificial intelligence & computer science, we started by collecting the required materials for our project such as micro-controllers, sensors, a pair of glasses, a laptop, and a miniature camera. Then we moved onto creating the project itself in which the digital software programmed onto the hardware plays the key-role, as the sensors and the camera will record the details and information from the surroundings and send it to the laptop for further processing. The camera would be the backbone of our project, as it will stream real-time footage to the laptop which will be analyzed by an open-source object detection model ‘YOLOv8’ for identifying objects. After finishing the base model of our project, we tested it in-front of objects such as toy cars, bikes, people, etc, and the results of the object-detection would be shown on the laptop. To observe this data, we created a device which has different modules and integrations for different functions. For example, we will use our camera and then stream it onto a laptop so the reading and the data can be processed on the laptop by AI using YOLOv8. As mentioned in the start, many people do not possess the ability to see, to assist them we have thought of this device which uses all readings and its analytical skills to analyze data and help them navigate, travel or simply, live a better life.