Evaluation of the Effect of Different Nutrients' Concentration and Composition on Hydroponically Grown Plant
As the world population grows, the demand of food products grows as well and there will be an expected food crisis in the coming years. To prevent those crises, alternative food farming methods must be used. This paper studied two farming systems in different conditions, to compare and find the best, natural and cost-effective system that will cover the current and future demand. The system which can also be used in those areas where soil is less cultivated with insufficient aeration. The first system is the soil-based system (traditional), and the other is hydroponic system. Hydroponic is a technique of growing plants in nutrient solutions with or without the use of an inert medium. Two types of seeds; peas and spinach were observed in both systems over a period of 25 days. In hydroponic plants coco peat was used in place of soil along with the Aegis nutrient. 8 plants were seeded for both types of plants in different systems, conditions, concentrations and pH to conclude the best condition. Growth parameters of all plants including root, shoot and leaf length were observed and recorded daily. On the uprooting, their weight (g), no. of root hairs and used nutrient’s volume(ml) were also recorded. Fungus and insects were seen in the soil plants. The results executed that the growth was maximum in spinach having normal manufacturer nutrient’s spray concentration(1.25ml/625ml) with pH 6 and in peas having normal supplier concentration (5ml/625ml) with pH 4. So, it can be concluded that hydroponic spinach, which is a green leafy plant, can ideally grow at the pH of 6 and peas in slightly acidic condition. Hydroponic planting system has a better growth effect than traditional soil system and this system don’t need any fertilizer, insecticide, pesticide, fungicide and herbicide. While soil plants’ growth was adversely affected by fungus and insects in the absence of these chemicals which can contaminate our food and make it less hygienic for our health. This result achieves the aim of this paper which is finding a planting system and its conditions that can increase the productivity to cover the food demand.
ReCiPla - Cyclic Soil Microplastic Remover
GROSSMANN, João Miguel Sastre. ReCiPla - Cyclic Soil Microplastic Remover: A way to remove microplastics from soil using electrostatics. 2023. 28 p. Research report – Scientific Apprentice Program, Colégio Dante Alighieri, São Paulo, 2023. Microplastics are the largest form of physical pollution on the planet. Affecting everything from terrestrial and aquatic environments to the air, compounds up to 1 micrometer in size are present inside the human body and can intoxicate the main organs in which they are found, such as the lungs, spleen, liver, and heart. Therefore, methods of removing these compounds from nature are essential, which is why this research is based on electrostatically removing MP from the soil. To this end, a vibrating conveyor belt was designed that would act in conjunction with a plate electrified by a Van de Graaff generator to separate the plastic compound using electric field induction. After characterization tests to quantify the voltage produced by the generator, which produced an average of 95 kV, the vibrating belt was made and will be used later in conjunction with the electrostatic method. This methodology suggests that it’s a success even after the electrified plate was applied to its structure. It carried out the proposed processes, such as moving the test masses, vibrating them, and fully supporting the electrified plate. In addition, the electrostatic removal method was tested to verify its efficiency and applicability. It was found that the removal of microplastics ranged it from 10 to 20% efficiency, suggesting it to be an effective method for separating microplastics. It should be noted that these statistics will be improved as the research progresses. In this way, the research proved capable of establishing an electrostatic removal method, as well as a process for transporting the material to be removed, thus achieving the objectives it set out to achieve. Finally, it should be noted that this research is still under development, with a view to applying the process in conjunction with the conveyor belt to carry out sample tests, as well as improving the removal process in the future to make it more efficient.
Design and Simulation of a Honeycomb Sandwich Panel as a Heat-resistant and Durable Construction Material
One of the main factors that contribute to fire incidents and the excessive heat people feel during a heat wave is the building materials used, and one such material that possesses durable and heat-resistant properties is sandwich panels. A possible structure that can be used to model sandwich panels is honeycomb structures; however, further research has yet to be conducted on its applications as a heat-resistant urban construction material. This study aims to design a three-dimensional model of a honeycomb sandwich panel and simulate its performance under different thermal and structural stressors. A 3D model of the honeycomb sandwich panel was generated using Autodesk Fusion 360. Then, multiple versions of the panel were generated with varying heat-resistant core materials—namely, aluminum, nickel, nickel-copper alloy 400, and copper—along with polystyrene as the core material for the control model. The following properties of every panel were assessed using finite element analysis (FEA): static deformation, stress distribution, strain distribution, total heat flux, and thermal gradient. Results showed that when subjected to varying structural loads (2 kN, 5 kN, 7 kN), the nickel-core panel demonstrated the best results in terms of static deformation and strain distribution due to its relatively lower deformation and elongation values, respectively. Meanwhile, under the same structural loads, the aluminum-core panel performed better than other core materials in terms of stress distribution due to it having the relatively highest difference between its simulated von Mises stress and its yield strength. The honeycomb sandwich panels have also shown to possess heat-resistivity when subjected to a thermal load of 90°C, with polystyrene being the most promising material overall in terms of heat-resistance due to its relatively lower heat flux and thermal gradient. The results from this study would contribute to future research on honeycomb sandwich panels and may be used in real-life applications.
Application of Carbon Aerogels in Lithium-Air Batteries
One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.
Climate Change Brings New Novel Virus
1. Research Motivation Have you ever seen news stating that spring is gradually disappearing from the Korean Peninsula? The characteristics of the four seasons are disappearing due to the impact of global warming. As supporting evidence, droughts and heatwaves continue during the rainy season, and unexpected heavy rainfall occurs during autumn. These abnormal temperature phenomena are greatly affecting agriculture. Crops wither due to untimely cold spells or summer droughts, and the proliferation of bacteria and pests worsens. We need to conduct a thorough investigation and response to such weather phenomena. Carbon is known to be the main culprit behind these abnormal temperature phenomena. We want to explore how carbon affects climate change and understand the implications it has. 2. Research Objectives The consequences of climate change, such as deforestation and rising sea levels, will cause significant damage to society as a whole. This will also have a profound impact on the survival of all living organisms on Earth. Unless industrialization is halted, global warming will continue, making it crucial to gain a proper understanding and find accurate alternatives. The damages caused by global warming are expanding the habitats of mosquitoes, which is expected to have an impact on the spread of mosquito-borne diseases. This can also influence the emergence of novel viruses similar to COVID-19. By examining past outbreaks of diseases transmitted by mosquitoes, we aim to predict and understand such occurrences, as well as explore ways to minimize global warming. 3. Expected Benefits Based on this research, a focused exploration of the ecological impacts of global warming can provide essential data to understand the effects of climate anomalies on us and prepare for them. As these phenomena are expected to worsen over time, it will be possible to develop measures to minimize the damage caused by bacterial infections and agricultural losses.