全國中小學科展

四等獎

A Modular Comprehensive Assessment Platform for Aircraft Maintenance

We were very curious about whether the aircraft will suffer lightning damages during flight, so we tried to search the answer on the internet. According to the searching results, we realized that during flight departure, passenger planes can suffer lightning damage. As a result, there will be lightning strike points, which needs immediate solutions for safety concerns. Besides, we found out that the exterior aircraft components, such as aircraft body, wings, tail, turbine engine and other areas, are vulnerable to corrosion, which also needs immediate solutions. Luckily, we came across a chance to chat with the engineer who works in the airport. Through that meeting, we knew that the maintenance of the aircraft is very important. However, the maintenance of the components depends on professional technicians, weather, the surrounding noise level, and other environmental effects. As a result, we think that it is initial for us to develop a device that can automatically complete the missions of aircraft maintenance. Below are two objectives that we need to complete: 1. Complete a non-destructive testing for aircraft damage, including corrosion and lightning strike points. Assessment areas include: Aircraft body, airplane wings, tail of the aircraft and the turbine engine 2. Engage in scanning results to analyze and predict for flight readiness. The collected results will proceed to the aviation company for inspection and maintenance. Based on these two objectives, we designed an automatic platform for aircraft maintenance. Below are four innovations of this platform: 1. we developed a method to replace the current stage based on the manual operation of the aircraft maintenance, the use of AGV (Automated guided vehicle) and the robotic arm combination. 2. Design a modular platform based on this method, including telescopic four-wheel independent rotating chassis and locking mechanism, scissors lifting mechanism, double sided synchronous belt forward detection telescopic mechanism, etc. The platform can shrink at the minimum height of A320, convenient access to the machine abdomen. 3. The positioning algorithm of the platform relative to the aircraft is proposed.

DCPIP變色比一比

“藍瓶反應”是一個常見的趣味實驗,以亞甲藍的藍色←→無色瞬間的變化令人稱奇。經過實驗,我們從許多不同的染色劑中,發現除亞甲藍之外,亦有能夠進行藍瓶反應的──“DCPIP”。於是我們進一步探討“DCPIP”的結構,並探討其可能的反應過程,及在不同條件下之反應速率。於是我們就發現了不僅葡萄糖、果糖、半乳糖可出現藍瓶現象,只要可以繼續氧化的官能基(例如羥基或醛),在其官能基附近有拉電子基的存在,亦產生效果絕佳的藍瓶反應。 亦以葡萄糖本身為探討的主題,到底是哪一個官能基最有可能先開始反應?也探討DCPIP、氧氣、葡萄糖及氫氧化鈉四者之間可能發生的機制。我們也發現了藍瓶反應的現象要發生,四者的條件缺一不可。另我們亦以氧化電位及還原電位去探討其中可以變色的原因。於是就慢慢揭開藍瓶反應神秘的面紗。

Chitosan Defies Death

Gangrene is the death of tissue of certain parts of the body. In Indonesia, people who suffer from Diabetes will also often suffer from Gangrene, which usually affects a patient’s feet. The medication for it is not affordable for everybody. I have chosen the Horseshoe Crab, simply because it’s known widely in Indonesian and can be found easily. Also, due to the fact that, among all crustaceans, the Horseshoe Crab contains the highest levels of Chitin. By using the Chitin found in the shell of the Horseshoe Crab, I shall endeavor to heal the Gangrene of Diabetic Patients.

[3+3]-annelation of cyclic nitronates with enol diazoacetates

The purpose of this research is to prevent the desertification by using my original “agar sheets”. The dry regions, in other words, the desert has already occupied about forty percent of the surface of the earth (Figure 1). In addition, it is said that land of seven million hectares turn into desert every year. However, we can reproduce the green-bosomed earth by using appropriate means, because this desertification originated in excessive farming, excessive pasturing, and deforestation caused by human beings. I learned “Cape Erimo’s Green Construction Method”, which has succeeded in planting trees in the coast of Japan by using seaweed, and this method led me to use the agar to prevent the desertification, which is a familiar Japanese food made from seaweed. I think that it is possible to prevent the desertification of any conditioned lands by using my original “agar sheets.”

多層元件含末端雙鍵官能基的電洞傳輸應用於OLED

使用濕式製程在製備多層元件時,最大的困難是如何避免前一層的薄膜被後一層的溶液溶解。本研究合成末端具有雙鍵且可熱交聯之材料(FTV),經熱處理後形成具有溶劑阻抗性之網狀結構,再塗佈發光層做多層元件,使得製程上較簡易,成本也較便宜,較於傳統製備多層元件需以蒸鍍方式來製作,濕式製程是更為方便。 FTV作為電洞傳輸層,元件結構為ITO/PEDOT:PSS/ FTV/PF/LiF(0.5 nm)/Ca(50 nm)/Al(100 nm),製備為濕式製成的多層元件。並且嘗試不同濃度和轉速尋找電洞傳輸層FTV的最適化條件。本次實驗找出濃度為0.25%,轉速3000 rpm條件最佳,亮度和效率分別為2625cd/m2 and 0.17cd/A,效果遠高於沒有添加電洞傳輸層FTV的元件(795 cd/m2,0.04 cd/A),為重要發現。 

Gannet Investigation: Survivng an Unnatural Disaster

For a unique marine bird, so magnificent and accessible to the public, the Australasian Gannet (Morus serrator) colony found at Cape Kidnappers, 紐西蘭, significantly lacks research. Knowledge of gannet behaviour and how humans could best sustain a relationship with them remains unstudied. M. serrator are colonial monogamous breeders and produce a single chick each breeding season (Ismar, S.M.H. 2013). With the same mate over breeding seasons, pairs work cooperatively sharing the energy input into a single chick. Such parental care leads to highly territorial behaviour (McMeekan, C. P. & Wodzicki, K. A. 1946). This suggests more dominant gannets would claim larger territories to have a greater distance between nests of other birds, to increase the survival of their offspring. With a land-based colony this means the gannets are at risk from land and airborne predators, suggesting more dominant birds will claim territories in the central area as it offers greater safety from predator pressures (Minias, P. 2014). It was hypothesised that birds in the centre will have a greater distance between their nests and have a smaller height compared to those around the periphery of the Plateau Colony. The distances between nests and the heights of nests were recorded in the centre and around the periphery of the colony to determine if there was a correlation between the variables. It was found that centre nests had a greater distance between them and were of a smaller nest height when compared to those around the periphery. Anthropogenic influences from tourism and conservation has the potential to change the evolutionary trajectory of managed populations. This colony is protected by predator control programs. Altering this significant selection pressure has the potential to change the nesting behaviour of this species. Monitoring annual nesting distribution patterns and colony numbers over time, may enable informed development of more sustainable ecotourism and protection of the colony. This investigation provides baseline data to support further research on this colony.

昆蟲拍翅的氣流研究

本實驗藉由肥皂泡膜色彩擾動觀察拍翼機拍翅時周圍的氣場流動,用以模擬昆蟲拍翅時流場模式,利用肥皂泡膜黏滯係數和空氣相似,且有色彩擾動等特性觀測拍翅機的渦流流場。並利用泡膜厚度與顏色關係,畫出厚度梯度圖分析渦流相較於風洞,肥皂泡膜的流場即便在拍翅機經過的後方依舊能清楚呈現,但風洞在拍翼機後方的流場則會因為擴散而消失。

Stop the Spread of Desertification by Agar

The purpose of this research is to prevent the desertification by using my original “agar sheets”. The dry regions, in other words, the desert has already occupied about forty percent of the surface of the earth (Figure 1). In addition, it is said that land of seven million hectares turn into desert every year. However, we can reproduce the green-bosomed earth by using appropriate means, because this desertification originated in excessive farming, excessive pasturing, and deforestation caused by human beings. I learned “Cape Erimo’s Green Construction Method”, which has succeeded in planting trees in the coast of Japan by using seaweed, and this method led me to use the agar to prevent the desertification, which is a familiar Japanese food made from seaweed. I think that it is possible to prevent the desertification of any conditioned lands by using my original “agar sheets.”

簡易方法測量勞侖茲力

在一個壓克力製的長方形盒中放入兩層濃度不同的食鹽水,將一隻尖端磨平的針頭水平置放在盒中,針頭出水口恰沒入上層濃度較小的食鹽水中,針頭以橡皮管和滴定管相連,滴定管灌滿染料水溶液,打開活栓瞬間,染料在食鹽水中形成漩渦偶極子,由漩渦偶極子移動距離隨時間的變化,可求得染料作用於食鹽水的慣性力。等位線與電場實驗的電場形成盤放入兩層濃度不同的食鹽水,用兩片平行金屬板做電極,在食鹽水面上放一磁鐵,磁鐵下方滴入數滴染料,食鹽水中的離子受電力、勞侖茲力及黏滯力作用亦形成漩渦偶極子,由漩渦偶極子移動的距離隨時間的變化可求得勞侖茲力。

蒙地卡羅法模擬光跡與病變診斷驗證

此報告是利用蒙地卡羅法模擬光子在組織內的行徑軌跡,並且依照生物組織成分的光學特性,了解頻譜變化。以皮膚組織為例,可分為表皮與基質,依照其成分巨觀量測到的光學參數(如:折射率、吸收、散射及非均向係數),調整光子微觀的位置、方向和能量,藉此累加統計光子的反射、吸收及穿透狀況,解釋組織光學所觀察到光子走越深穿越遠的現象,與對應生理的巨觀的反射光譜變化。模擬數據中可看出波長越長對於病變組織反射率的變化越為敏感,與文獻中病變資料比較,可對應其提供的結果;並且我們延伸探討在紅外光的結果,此範圍的光為生物窗,其穿透深度較深,可以增加應用範圍。