Research the efficiency of the fog-catching nets
Islands far from lands use the underground or surface water as the water for living. The population of the islands is growing fast and the amount of water usage is increasing year after year. However, the amount of water usage is limited, so that people who live in islands have trouble using water. To compensate this problem, underground water is drawn from deeper underground sites. If this matter occurs continuously, sea-level may rise and then we cannot use underground water. Seawater desalination is a way to solve the water shortage, but it requires a lot of energy. It is difficult for island far away from lands to supply a lot of energy. It is considered the eco-friendly way to minimize the use of energy on the island. In order to solve the problem of water shortage on the island, it is considered fog that on the island occur frequently. It is an attempt to create water from fog, but it is a lack of research of efficiency of fog-catching nets to create water from fog. In this research, I have studied the efficiency of the fog-catching nets, a way to increase the efficiency, the amount of water that is created on the island, usage of discarded fishing net for fog-catching nets. Through this research, I found a kind of fog which can be changed into water and the difference in efficiency due to the difference in the size of the mesh size of the fog-catching nets, wind direction, wind speed, water absorption capacity of thread of fog-catching nets, installation direction of fog-catching nets, a way of installation of fog-catching nets. Also I found fog-catching nets of discarded fishing nets on the island and the possibility of usage for everyday life that the amount of water are created for a day or a month during dry season on the island.
密碼鎖
一個有3 個旋鈕,每個位置的號碼數分別是a、b、c 的密碼鎖,如果有兩個位置的數字正確就能打開,最少需要猜多少次才能保證打開這個鎖。在本論文中,我們將密碼鎖三個位置的號碼數分成:a=b=c=n、a=b<c,a=b>c 和a>b>c 四個部份來討論。前兩部份的研究已經找到最少次數開鎖的方法 ,後兩部份則是給了一個演算法可求出開鎖次數的上界。If a combination lock with three rotate wheels can be opened when two wheels are adjusted to the correct numbers, then how many guesses does one need to make before he or she can actually open this lock? Let us say a , b and c respectively represents the numbers that should show on each wheel. In this paper, we divide the numbers into shown on the three wheels, and they are a = b = c = n , a = b c and a = b < c . The research on the first two combinations has already given us the method we can use to open he lock with the least number of trials. On the other hand, the latter two offer us an algorithm that can be uses to obtain the upper bound of tries needed to open the lock.
Finding a Better Brain Booster
The purpose of my project was to determine which activity improved academic performance the most: 10 minutes of exercise, 10 minutes of Brain Gym (cross-lateral movements), or a combination of 5 minutes exercise and 5 minutes Brain Gym. This project was conducted to find which activity would be a better learning aid in grade 4 students. There were many steps to conducting this study. First, I located teachers and classes, willing to allow the testing and determined days and times to test. Next, I created consent forms to explain the project and had permission forms from the students and their parents signed. Then I prepared 15 math and reading tests at students’ grade level. There were two tests for 15 days- labeled Before Test and After Test. When I administered the tests for the classes doing the activities, I made sure the tests were given by the classroom teacher, which kept the students motivated. Tests were given every day for 5 days. The Before Test was given at 1:00 pm. Then at 1:30 pm students did 10 minutes of the planned activity for that week. Immediately after the activity, students were given the After Test. This was done every day and was repeated for Exercise, Brain Gym, and Combination week. The control class was designed to determine if doing the test for a second time in a day improved the student’s performance. The Before Test was given at 1:00 pm and then at 1:30 pm. When the Before Tests were completed, the students continued with their daily work for 10 minutes. Then at 1:40 pm students were given the After Test. This was repeated for Exercise, Brain Gym, and Combination week. Students were given 10 minutes to complete the scheduled activity that week; either Exercises, Brain Gym or a combination of the two. During the week of Exercise, Jumping jacks, Skipping, Stride jumps, Burpies, Twisties and Jogging on the spot were completed in the 10 minutes provided. During the Brain Gym week, there were 26 Brain Gym movements. The lists of movements were rotated each day; so all movements were performed. The test results of this study were intriguing. (Bar=Standard Deviation) I concluded that 10 minutes of exercise was the better brain booster. Exercise improved academic performance by 9.8%. Brain Gym improved academic performance by 0.2% and the combination activities increased test scores by an average of 3.2%. The control class test scores decreased on average by 1.0% indicating that writing the tests twice in a day, did not improve students’ test scores. Exercising for 10 minutes improved student’s math scores by 11.0% and reading scores by 6.9%. Brain Gym math test scores decreased by 1.4%, and increased in reading by 1.8%. In the combination of the two, the math test scores decreased by 1.0%, reading test scores increased by 7.4%. Overall, the most effective and reliable brain booster was 10 minutes of mild aerobic exercise alone.