就是那道光-色素增感型太陽能電池改良之探討
在這能源短缺的時代,開發替代能源已經成為主要課題。利用光觸媒特性所製成的色素增感型太陽能電池,因二氧化鈦光觸媒受到紫外光照射才產生電子躍遷,吸收光的頻率區域狹小,實用性不高。因此研究氧化鋅、二氧化錫與二氧化鈦混合,是否能提升該電池的轉換效率。藉由各種變因的探討,從中選取最有利的方式,使太陽能電池發揮更大的效益。除了以溫度、電解質、混合比例等因素外,增加電極面積以及串聯均可提高電壓與電流,以增加日常生活的實用性。如不斷的改進發展,諸如電解水、使小燈泡發光,甚至各種小家電用品的使用,都可應用於其中。In times of energy shortage, exploring the alternative energy has already become a main issue. The dye solar photocell is using photocatalyst characteristic. Because the electron transition is caused by lighting up the titanium dioxide photocatalyst by the ultraviolet, the frequency of spectrum is narrow and small. It is thus impractical. Therefore, we research whether or not the mixtures of zinc oxidize and tin oxide with titanium dioxide can improve the conversion efficiency of the dye solar photocell. Through discussion on various kinds of factors, we can choose the best way to make the dye solar cell yield more efficiency. In addition to the factors such as temperature, electrolyte, mixed proportion, etc., increasing the area of electrodes and contact can improve the voltage and electric current. That way we can increase the practicability for daily use. With constant improvement, it can be applied to many kinds of things, such as electrolyzing water, small bulb lights, even small household appliances.
新穎光子晶體材料的研究與開發
本研究目的1.探討催化劑對光子晶體SiO? 合成的影響,依據催化劑對光子晶體製作的數據,統整歸納出不同濃度的氨水催化劑對於SiO? 的吸收光譜與粒徑大小等性質的影響。2.尋找簡易的方式進行光通道的製作。 採用溶膠凝膠法將tetraethylorthosilicate(TEOS) 以氨水做催化劑在乙醇溶液中的水解及縮合反應製作單分散SiO?粉體。 嘗試將細線附著在玻片上進行排列,排列完成後將細線拉起企圖製造一條溝道。 實驗結果,催化劑會影響合成SiO? 的顆粒大小,隨著催化劑濃度增加,顆粒大小也隨之增加。使用細線可成功製造出凹陷的孔道,但目前採用之線仍嫌太粗,欲尋找奈米線材加以取代以製造出更適用之光通道。 ;The purpose of this research is 1.to find out the influence of the catalyst on compounding silica photonic crystals . According to datum , I can generalize the connection between the consistency of catalyst and the particle size of photonic crystal. 2.to find easier method of making the passage of light. I used tetraethylorthosilicate (TEOS) as a reactant and ammonia as the catalyst to react hydrolysis ,water condensation and alcohol condensation in ethanol. I tried to put fine lines on sheet glasses. After the arrangement of the silica particles, I took apart the lines attempting to make sunken ditches. The outcome of this ecperiment show that partical size increases with the consistency of catalyst. We can use fine lines to make the sunken ditches, but the line is not fine enough that I should find much finer lines to make it.
拖線溜點
原題目是環球城市盃中,一個圖論的問題。而題目提供了一個證明,是證 明此種連線都是偶數的圖形,一定會在三的倍數邊形成立。在經過一番思考過 後,我們希望能將原本的偶數連線性質加以驗證,並確定奇存在性。此時,我們 也不禁聯想到:奇數是否也有所特別的性質。因此,我們也向奇數連線做研究。 就在平面得到了部分結論的同時,我們想到這個問題是否可以推廣至三維 空間。然而在推至三維空間的過程中,我們又聯想到,另一種平面:球面。在球 面上放點,能否也找到一些不同的性質。因此,我們分別從平面、球面、立體圖 下手。 基本上,探討平面和立體問題的方法,是以土法煉鋼的方式來求出結果。 然而這種圖論的問題,不可能嘗試到無限多點的情形。因此,我們是著找出一個 關鍵的key,那就是結合性質和外接合性質。以這兩種方法,我們可以將一個簡 單的基本圖形,推向無限多點和無限多邊的情況。 接下來,還有討論一些特殊狀況,例如: deg v=3n+1,探討其結果。 最後得到的結論是: 1、平面偶圖成立的條件為:此多邊形為三倍數邊形, 而且除了內 部一、二、四點以外, 其他點數都可以成為偶圖。 2、平面奇圖成立的條件為:奇數邊形的情形下,除了三點以外,其 他的內部奇數點的都可以成為奇圖。偶數情形下, 除了四 點以外, 其他的內部奇數點的都可以成為偶圖。 3、三角形平面圖,d eg n 皆為m 成立的條件:2< m< 6( m? N ) 4、三角形內外任意點d eg 皆為3n ( n ? N )的成立條件: 三角形內部4 x+1 個點( x ? N )。 5、三角形內外任意點d eg 皆為3n+1 ( n ? N )的成立條件: 三角形內部3 x 個點( x ? N )。 6、立體偶圖n 頂點(n>4)面體的成立條件為: 內部點數為5m+ n- 3、5m+ n- 1、5m+ n、5m+ n +1、5m+ n +3。(m 為大於或等於零的整數) 7、立體奇圖四面體的成立條件為: 內部點數為偶數皆存在。 The original problem is a question of Graph Theory in IMTOT ,which provides\r a proof that proving the figure which its linking-line number is even ,should also be\r contented in the triple-sides figure. After profound consideration ,we try to make sure\r the existence of the properties the we mentioned above. Meanwhile ,it also occurs to\r us that whether the properties would be contented ,in the figure which its linking-line\r number is odd. So we make our way to it. Additionally ,three-dimensional and\r spherical figures are part of our research as well.\r Basically ,we discuss the problem in two-dimensional and three-dimensional\r aspects with the simplest method .However ,it is impossible to discuss the problem in\r unlimited dots .Hence , we are going to find a “key” to solve this problem .As a\r result ,we can find a simple basic-picture , and expand to infinite-multiple lateral\r pictures.\r Next step ,we also discussed some special situations , for example: for each\r point v , deg v=3n+1.\r At last the conclusion is following:\r 1、The conditions of linking-line number is even: triple-sides. And the amount of\r points inside the figure is without 1,2,and 3.\r 2、The conditions of linking-line number is odd: In the odd-sides figure , all number\r of the points inside the figure can be content without 3 point. In the even-sides\r figure , all number of the points inside the figure can be content without 4 point.\r 3、In a triangle , each point’s deg is the same number m: 2