全國中小學科展

四等獎

奈米防蝕專家-微乳液法製備聚苯胺奈米粒子及其在防蝕應用研究

導電高分子在各面之應用非常廣泛,其中聚苯胺因價格便宜,製作簡便,使\r 其應用潛力更為突出。聚苯胺在鐵系及非鐵系金屬之防蝕能力已被證實,但由於\r 聚苯胺與金屬之附著力不良使其應用受到限制。奈米粒子所具有的表面效應、小\r 尺寸效應及宏觀量子隧道效應,使得奈米微粒材料之應用蓬勃發展。但在高分子\r 奈米微粒之製備仍屬有限。本文以微乳液法製備聚苯胺奈米粒子,以提高聚苯胺\r 與金屬間之附著力,使其防蝕能力充分發揮。國外雖已有廠家製作聚苯胺防蝕塗\r 料,但屬於商業機密無從得知其製備方法。本文所研發的微乳液法則是國內首\r 創!\r The development and application of the conducting polymer polyaniline is\r getting prosperous and popular. The capability of polyaniline in corrosion protection\r has been proved. But due to the adhesion of polyaniline on the metal is poor, the\r applications are restricted. By the way, the nanoparticles have the special effects such\r as the surface effect, the small size effect and the macro-quantum channeling effect\r make its applications are prosperous.\r In this paper, the authors utilized the microemulsion method to produce the\r polyaniline, to modify the adhesion of polyaniline on the metal in order to improve\r the effect of the corrosion protection of polyaniline in ferrous metal. The experimental\r results show that the nano-polyaniline has good adhesion on metal. The metal coated\r a layer of nano-polyaniline has the great ability of anticorrosion under different\r corrosion situations after weeks. The nano-polyaniline produced by the\r microemulsion method add the recipes invented by the authors has great potential to\r use in scale-up production in industry.

Adapted prematurity in Cuscuta campestris

平原菟絲子(Cuscuta campestris)處在不穩定或養份不足的環境中,吸器(haustorium)的生成個數會明顯減少,並加速開花結果的速率。不同於其他植物的早熟,平原菟絲子早熟時會產生自我寄生(self - parasitism),且結空穗機率明顯較低,顯示其對於不穩定環境的耐受度提高,並提升子代存活機率,稱之為適應性早熟(adapted prematurity)。相對於一般寄生,自我寄生吸器生成時間較一般寄生長,吸器大小並無顯著差異,然而吸器數量較少,且較為深入宿主。起初推論自我寄生為演化中的缺陷,這樣造成其無節制的寄生,對生存有害。但是經過長期的觀察之後,發現其生長狀況並無受到影響,而是週遭環境不穩定,所促使暫時分解自體本身的養分,以度過考驗。

完全圖立方乘積之最小控制

完全圖Kn是指一個圖中有n個點,且任意一個點都跟其它的點有邊相連。兩個圖G和H的卡氏乘積G□H的點集V(G□H)={(g,h)| g∈V(G),h∈V(H)},兩個點(g1,h1)和(g2,h2)有邊相連若且為若g1=g2 且h1~h2,或g1~g2且h1=h2。 三個完全圖Ka、Kb、Kc 的立方乘積是指Ka□Kb□Kc。一個圖G中的一點v所連的其它點稱為這個點v的鄰居,也就是N(v)={x | x~v}。一個點集S中的所有點的鄰居的聯集稱為這個點集的鄰居,也就是N(S)=∪v∈S N(v)。如果一個點集S和它的鄰居N(S)包含了一個圖G的所有的點,也就是S∪N(S)=V(G)稱這個點集S是這個圖G的一個控制集。我們把圖G的所有控制集中點數最少的稱為最小控制集,並定最小控制集的點數為最小控制數γ(G),也就是γ(G)=min { | S |, S是G的控制}。 本文的目的在於研究完全圖立方乘積的最小控制,也就是要給γ(Ka□Kb□Kc)一個上界。特別當 a = b = c = n時,γ(Ka□Kb□Kc) = 。 A complete graph Kn is a graph with n vertices, which any vertex is adjacency to every other vertices. The Cartesian product of two graph G and H which is denoted G□H is define as follow: the vertex set V(G□H)={(g,h)| g∈V(G),h∈V(H)},and two vertices (g1,h1) and (g2,h2) is adjacent if and only if g1=g2 and h1~h2 or g1~g2 and h1=h2. The Cartesian product of three complete graph Ka,Kb,Kc is Ka□Kb□Kc,which is the same with (Ka□Kb)□Kc. In a graph G, the neighbor of a vertex v N(v) is the set of the vertices adjacent to the vertex v, that is N(v)={x | x~v}。 The neighbor of a vertex set S is N(S), which is the union of the neighbors of vertex v over S, that is N(S)=∪v∈SN(v). For a graph G, if a vertex set S unions its neighbor N(S) equal to the vertex set of G, that is S∪N(S)=V(G), we say that S is a dominating set of G. The domination number of a graph G will be denoted as γ(G), which is the minimum size of all dominating set of G.. We give an upper bound to γ(Ka□Kb□Kc). And when a=b=c, γ(Ka□Kb□Kc) ≦

Comfortable Equipment for Pedestrians

The phenomenon of pedestrians nowadays is still found. Due to frequent walking, sometimes our legs feel tired and hard to move. This is become the basis for developing tools that are convenient for pedestrians. An easy tool for humans is needed for our activities, especially walking. The Synergy between our hands and feet provides a big and significant contribution to the appliance. Normally, the movement of our hand gets along with its motion with a different side of the foot. When the right foot step, then the left hand is swung forward, and vice versa. The tools can be developed by utilizing a variety of systems. The system includes the tools concentric wheel and axles system, spring system, and pulley system. The concentric wheel and axles system is useful in controlling the rope. Movement on the rope could activate the entire system on the appliance. Wheel that related with the hand is three times bigger than wheel that related with pulley that is applied on foot. Spring system is able to lighten the pressure of the foot with a given upward force, and able to provide downward force when the spring returned to its original position. While the pulley system on the tool used to provide mechanical advantage two times is also useful to lighten the pressure of the foot when walking. The tools can be designed with simple, and able to provide benefits to users. By trial and error, it shows that the tool is able to lighten human’s activity when they walk. The tool can be able to lighten the leg’s load by utilizing arm muscles work. Utilization of the arm muscles which helps to ease the pressure of the foot can provide more benefits. One of them is that it can strengthen the arm strength, so the tool can be used as sport equipment. Utilization of the tool can also be reserved for special people who have difficulty in walking due to an accident or birth with leg defect.

高分子複合材料的性質、製作與分解

Synthesis of Polymer Material and its Decomposing Processes Because plastic cannot be decomposed naturally by itself, therefore, additives needed to be added to facile the decomposing process. Let us choose one common material: thermoformed Nylon 66. During the formation process, addition of glucose powder and monosaccharide polymerized will result in yielding the products of methyl cellulose, soluble starch and agar powder. Observe whether adding additives would allow changes to occur structurally, or would the elasticity be improved when exist in a linear state, or even it would form a better pH resistance property. According to the experiments, when Nylon 66 contains methyl cellulose, it can sustain the highest tension. Its coefficient of elasticity is 2 times as large as the original one. In terms of the data, we can also observe that when Nylon66 contains soluble starch, it has the lowest ability to sustain tension. Besides, it has the lowest coefficient of elasticity. And when Nylon 66 contains cellulose, it has the highest rate in the process of decomposing.As we look at the surface of polymers under 400 diameters, we can observe that the Nylon 66 with agar powder has some filiferous substance. But we have not confirmed what the matter is. 由於塑膠不能在自然情況下順利分解,所以我們在塑膠中添加其他成分使塑膠可以較易 分解。我們選定常見的塑膠—熱塑性的耐綸-66。在聚合物的製作過程中添加葡萄糖、澱粉、 洋菜粉末以及甲基纖維素,並觀察加入添加物的塑膠在結構上是否有變化?其塑膠在線型時 之張力是否有增強?耐酸鹼性是否有變化?由實驗結果我們可以得知含有甲基纖維素之耐綸 -66 所能承受之張力強度最高,且其彈性係數也比無添加物之耐綸-66 高出近2 倍;而含可溶 性澱粉之耐綸-66 所能承受之張力最小,且彈性係數也最低。此外,進行生物分解的實驗可發 現,含葡萄糖的耐綸-66 分解的速率最快。使用400 倍的光學顯微鏡可發現含有洋菜粉末的耐 綸-66 表面與其他耐綸-66 複合材料差異較大,值得進一步研究。

利用雙雷射精密測定準靜物的極微小變位

To-be static objects, such as bridges, volcanoes, seldom move ordinarily but have mini displacement only under special conditions, like flood or earthquakes. Therefore, how to measure their mini displacement has never become fully popular with scientists’ research. Then, beginning with “ Optical Lever Theorem”, through a series of speculation and discussion, I decide to use laser ray as light source to perform an experiment ------- trying to find objects with mini displacement in our daily lives, such as revolving electric fans, engine-opening motorcycles, shaken trees, testing their magnifying effect first. Next, I try to use the control-experiment method to find out the magnifying relation and formula of the rotation angle of the plane mirror and the displacement quantity of light focus. As to the measure of mini displacement on objects, I utilize the pillar mirror as a reflection plane to research the magnifying relation of reflection light focus and original displacement quantity. The image made from the light focus of pillar mirror’s reflection, however, isn’t so perfect that I have to use a special plastic-made light-concentrating mirror, which is also called “ Fresnel Lens ”, to focalize the light for easy observation. Besides, I find out the “ function graph ” of the mini displacement quantity on to-be static objects and the displacement quantity of reflection light focus. At last, I try to build up a “ Bridge Alarm System ” of Optical Lever Theorem. 準靜物如橋樑、火山,由於平常不輕易移動,只有在特殊情況下(如洪水、地震)時,才會發生位移的現象。因此,其微小變位如何測量,一向是科學界較少探討的題目。於是,先由光學槓桿原理著手,經過一番思考、探討,決定採用雷射光作為光源,並作了第一個實驗--找生活中具極微小變位的東西,如轉動中的電扇、引擎發動的摩托車、被搖動的樹木等,先測試其放大效果。接著就試圖用控制變因的方法,找出平面鏡旋轉角度和光點平移量的放大關係和公式。至於物體微小的平移量之測量,則是利用柱面鏡作為反射面,來探討反射光點的位移與本來的平移量之放大關係。然而,柱面鏡的反射光點成像並不理想,於是用一種特製的塑膠集光鏡,又稱Fresnel Lens,將光點集中以利觀測,並且找出準靜物之微小平移量及反射光點的位移量的函數圖形。最後,嘗試建立一套光學槓桿式的「橋樑預警系統」。

流體碰撞物體所產生的波形之研究及應用

當流體由圓管流下,在碰撞到物體後水流會產生類似駐波的形狀。為瞭解此現象的產生機制,及影響此現象的變因,我們改變流體的表面張力、流速及與碰撞物體間的距離,以探討各變因對波形所產生的影響,進而研究此現象的成因。由實驗結果發現波形會因流速加快、擋板距離增加、表面張力減少而有波長變短的趨勢,且可以用表面張力波的理論解釋。由理論推導的結果,可測量液體表面張力。由於圓球狀的外型使表面積增大,可增加液體之散熱的面積,因此可應用在水冷系統方面。A phenomenon similar to the standing wave, which occurs when a slow-velocity fluid jet collides with an obstacle, was observed. Because the free surface profile was observed to be stable, the phenomenon was not considered as standing wave. To understand the mechanism of this phenomenon and the factors that can affect the free surface profile, the surface tension of the fluid, jet velocity and the distance between the exit of the tube and the obstacle are varied to study their influences on the free surface profile. According to our experiment, the wave length is shortened when the jet velocity or the distance between the tube and the obstacle increases or when the surface tension decreases. The tendency of the investigated phenomenon can be explained by the capillary wave theory. Based on Bernoulli’s principle, continuity principle and surface tension\r equation, an ODE (ordinary differential equation) could be formulated. By using numerical method to solve this ODE, we predict the free surface profile which could match the experimental photo well. The tendency of the phenomenon can also be explained by the ODE. In order to measure the surface tension of the fluid, we wish to minimize the experiment apparatus. To enhance our assumption we use laser to locate the individual particle that we add in the fluid and calculate the velocity field of the flow jet.

黑暗的力量

We study the magic power of dark energy and dark matter by using theoretical derivation and numerical simulations. We found that: 1. The dark energy will gain kinetic energy from the moving dark matter through gravitational interaction. Due to the law of energy conservation, the motion of the dark matter will slow down and satisfy Ek(t)−Ek0 ∝ρDE1.92 t, where Ek(t) is the kinetic energy of the dark matter, Ek0 is its initial kinetic energy, ρDE is the energy density of the dark energy, and t is the time. 2. The formation history and the structure of galaxies will be different due to the existence of dark energy. The more the dark energy, the earlier the formation of the galaxy core. In addition, the kinetic energy Ek(R) as a function of R will be different if the ρDE is different. Thus we can observationally measure the Ek(R) of galaxies, compare it will our results here, and then deduce the ρDE in our universe. The results here can be applied to the observations in the near future. 我們藉由理論的推導,配合電腦模擬的手段,來探討宇宙中黑暗物質和黑暗能量的神祕力量。我們發現:一、黑暗能量會透過重力交互作用而從運動中的黑暗物質獲得力學能,而且因力學能守恆,致使黑暗物質的速率減慢,滿足 Ek(t)−Ek0 ∝ρDE1.92 t, 其中 Ek(t) 為黑暗物質的動能, Ek0 為其初始動能, ρDE 為黑暗能量的密度,t 為時間。二、星系的形成過程及結構,會因黑暗能量的存在而改變。黑暗能量越多時,星系的核心會越早形成。而且動能 Ek(R) 隨著至星系中心距離 R 的變化,會因 ρDE 的不同而不同,因此可以試圖量測宇宙中星系的 Ek(R) ,然後和這裡的結果比對,即可推導出宇宙中的 ρDE 。這些研究成果,將可直接應用在未來的觀測結果上。

On Course Line Management

The Online Course Management system was developed in 2012 by George Moon to address the issue of creating course books at Burnside High School in Christchurch, New Zealand. The course books are designed to inform students, staff and parents of the many courses that are available for students to choose for their next year of study. In the past, the system that the school used consisted of large amounts of paperwork and duplication. Not only did this system require a lot of effort from staff, but the course book cost the school thousands of dollars to produce, as it had to be sent off to be published into a large book that would be read by students for a week, then likely thrown out. This year the school decided to digitise the course book, so that students would look at their courses online. Earlier this year, the school believed that the new School Management System (SMS) ‘KAMAR’ would be able to handle all of the necessary information, however this was not the case. Because of this, they needed a simple solution that would collate all of the course data, and then output it as a course book. I developed my project to do this. It is a web based program that is accessible by staff on their computers which enables them to enter in all of the course and assessment data for their departments. As it is all securely stored on a central database, it reduces duplication and staff workload, as well as the added environmental bonus of less paper being used. The program also outputs data in a number of ways including as a coursebook PDF (digital document which can be uploaded or printed), an Excel spreadsheet and a webpage for easy viewing. It can be sorted or printed by different categories (such as level, faculty, department), which proved to be a very useful feature. Following some research on areas such as design principles, browser compatibility and screen resolution (computer screen size), the program was designed to make best use of this this information. For example, most of the computers that staff would access the website on were of a similar size screen, so I made sure that my website worked well for them. I also used my research on design principles to try and create a simple, clean interface that users with limited computer skills would easily be able to navigate around. The outcome was real, as it was used by the school to generate their coursebook this year. Following a 95% student completion rate of course selection many months earlier than previous years, the system (although it had some issues) was pronounced a success, and the school is looking to use it in the years to come. There are a number of steps I am looking to take in the future with this program including the potential sale to other schools, so they can take advantage of the features it has to offer.

斬不斷,理還亂—方塊切割

看到環球城市數學競賽2003年春季賽國中組試題中,一題有關方格遊戲的問題: \r \r 在一塊9 × 9的正方形方格紙板中,最多可以挑選幾個小方格, \r 使得沿著這些小方格的二條對角線割開後,原正方形方格紙板 \r 不會分裂為二片或二片以上(即沒有小片紙板會從原正方形紙板 \r 中“掉下來”)?\r \r 原題目雖然只有一種圖形解,但我們發覺在其他方格紙板中,圖形解不一,在對幾個圖形分析和研究過後,發覺“似乎”有其特定作圖法,而且可挑選的小方格數也頗有發展的地方,令我們覺得相當有趣,而且此題目和之前看過方格類的問題不大一樣,因此,決定以此問題當作科展主題,加以延伸、研究,自我挑戰。