節省能源之社區供水系統
The water-supporting system of community should use high efficiency pumps to\r support water and set up a unique water tower for each floor. Since there are high and\r low period of water-consuming and the variety of water pressure, we have to set up a\r unique water tower for higher floors firstly.\r It help us through high peak period of water-consuming, or it turns on pressure-aid\r pumps to save energy.\r 社區供水系統應採高效率之幫浦高壓供水,分樓層設置專用水塔,在用水有高峰\r 及離峰時段,水壓有高低變化,優先順序供水給較高樓層的專用水塔,樓層專用水\r 塔容量必須足以渡過用水高峰時段之容量,否則就啟動輔助加壓幫浦,達到節約能\r 源之目的。
會變色的金屬—神奇的奈米科技
本報告研究內容,是利用電化學氧化還原方法合成金、銀、銅三種奈米粒子,以及探討電流是否會影響電解合成奈米粒子,在前半部成功地利用控制電解的部份條件,如界面活性劑、以及電流值大小,而合成出金、銀、銅三種奈米粒子,利用UV-VIS的光譜分析,鑑定其三種奈米粒子不同的吸收波長,其光譜出現吸收的現象是因為金屬表面特殊的表面電漿共振吸收現象而產生的。但是在本實驗中發現在UV-VIS的光譜中,電壓值的大小對金奈米粒子吸收波長並沒有關係,這些奈米粒子在水溶液中藉由界面活性劑的包覆,而溶解的相當好。 The content of thesis focuses on using electrochemistry oxidation-reduction reaction to synthesis gold, silver, and copper nanoparticles. We confer whether current of the electrolysis is an influence for the synthesis of nanoparticles. We succeed in synthesizing nanoparticle by controlling some terms of the electrolysis, like the micelle concentration, and current value. Using UV-VIS spectrum to analyse wavelength of three kinds of nanoparticles. The special phenomenon of absorption spectra is appeared because the surface plasma resonance on the surface of metal. From the UV-Vis spectra, we didn’t find the exact relationship between the potential value and the absorption spectra of gold nanoparticles. Finally, we also obtained good results in spectra observation, which meant that these nanoparticles encapsulated with surfactants were well solved in the solution.
奈米使你變美了!-奈米二氧化鈦在化妝品上的應用
奈米的科學與技術將是21 世紀所要探討的方向。在了解奈米粒子的表面效應、小尺寸效應、量子尺寸效應、宏觀量子隧道效應後,發現其應用甚廣,諸如再生物、醫學、環境、國防、工業產品等方面,都將佔有很重要的地位。我們主要是利用溶膠-凝膠法來製造二氧化鈦奈米粒子,並了解二氧化鈦奈米粒子可吸收紫外線及光催化反應,將廣泛應用電子、紡織、塑膠、橡膠,空氣淨化及廢水處理方面。本實驗將利用二氧化鈦的吸收紫外線特性,來研究其應用在化妝品上面。The science and technology of nanomater will be the direction we will explore in the 21st century. After understanding surface area effect of nanometer particle, Small size effect, Quantum effect, and Macroscopic quantum tunnel effect, we can diswver the application is very far-fluing. For example:biochemistry, medical science,eneironment,national defense and industrial products,will devine a very important position.We mainly use sol-gel method to produce U-TiO?,and understand the absorption of UV and photocatalysis,plastics,mbber,purging air,and dealing with effluents.This experiment will use characteristic of absorbing UV of U-TiO? for researching the application of cosmstics.
數列生成遞迴
這個題目是源自2003年的TRML思考賽的題目,原題目並不難,它只有用到簡單的排列方法,主要是討論 an 、bn 兩種數字的排列,其中 an 為滿足下列所有條件之N位數A的個數。
I. A中每一個數字為1或2
II. A中至少有相鄰的兩數字是1
而 bn 表示滿足下列所有條件的N位數B的個數
I. B中每一個數字為0或1
II. B中至少有相鄰的兩數字是1
以及探討an 、bn 與費氏數列cn之關係,其中 cn = cn-1 + cn-2 ,n≧3 ,c1=1, c2=2 。
其中 an 如果改成考慮為一數列,其值不變;而 bn 如果改為數列,那麼就不需要考慮0不能為首位數字的情況。如此,讓人聯想到一個用生成函數解的題目「一個N項數列,其中每一項只能是0或1或2,其中0和2永不能相鄰,求這個數列個數的一般式。」,因此,我們嘗試將這個題目改變它的要求繼續做下去,發現其中有某些規則,例如:不只是原來的11相鄰,甚至是排列其它種方式,都可能從其遞迴式看出它排列的意義,甚至這種排列數是可以用遞迴式求出來的。這提供了我們另一種求數字排列的方法,也是我們覺得有趣的地方。
在過程中我們初步得到以下結論:
This solution is according to power contest of 2003 TRML. It is composed of two number arrangements, an , bn .
First, suppose an is the total number conforming to the following rules.
I. Each number is 1 or 2 in A.
II. There is a couple of (11) in A at least.
Then, suppose bn is the total number conforming to the following conditions.
I. Each number is 0 or 1 in B.
II. There is a couple of (11) in B at least.
Furthermore , we give the thought to the relation among an , bn ,and cn (Fibonacci Sequence).
By the way, if an is changed to a sequence, and the result is the same. But if bn is to arrange number, we have to give thought to the fact that the first number can’t be zero. If it is a sequence, we don’t have to consider it.
The problem belongs to combinatorics. After we do this problem, we find not only original question but also other permutation can be understood by its formula. The problem provides us with other means to solve permutation and combination question. Then, we get the conclusion as follows:
阻尼作用對搖擺系統的影響
地震波會以橫波和縱波的方式傳遞能量,學校的教學大樓中地下具有蓄水池者搖晃的持續性感覺比較短暫,於是利用彈簧波模擬地震波測試不同質量的台車接收到的能量會較空車為多。並利用自製模型測試不同容器形狀和水量的阻尼作用,結果發現搖擺時,時間球形>錐形台≒方形台;球形台裝有不同水量時擺動時間裝滿裝滿時>未裝水>裝1500mL 時;平行移動時則是球形台裝水2000mL 後鉛錘移動距離最短。整個實驗過程中由於未裝滿水的模型內部重心改變不規律,而且模型內所裝的水量因為不規則擾動經吸收的能量轉換成水溫上升的熱能,因此導致擺動能量的消耗造成擺動時間縮短,如果新式大樓興建時考慮消防蓄水池和水塔的造型和裝水容量,應可以減少地震時的搖晃時間,降低心理的緊張和物體因震動而產生的移動傷害。Seismic wave can transmit energy with transverse and longitudinal wave. The shaking of these buildings with reservoirs underground in our school for a shorter time, so we use spring wave to simulate seismic wave, and test the proportion of transmissible energy received from different mass of objects. The energy gets from wave motion passing on is bigger when cars carrying capacity than empty cars. And we use homemade models to test damped effect of different forms and water. At last we discover the time is Sphere > Taper ≒ Square while they swing with different amounts of water, the time it cost is Full > Non > 1500 mL. When they move horizontally, the plummet moved shortest, when the water of the sphere is 2000 mL. During the whole experiment, the center of gravity in the models, which are not full of water changes irregularly, and the water in the models can absorb heat energy from energy disturbing, so the swing of energy consuming makes the time of the swing shorter. If the fire controls reservoirs, the shapes and dress up water volume of the water towers, are taken into consideration, the duration of the shaking of earthquake will be shortened so that our fear and nervousness will be lessened, and the damage causer from the shaking will be reduced.
模擬聲波干涉
在高中光學裡,介紹了許多有關光波之特性,而聲波與光波皆具有波動性,因此聲波應具有如干涉、反射、聚焦等特性,但在物理課本上並未詳加敘述,所以我們開始了本項的研究,希望可以籍由改變聲源及邊界的各項條件,而探討其發生之現象。在本研究中,我們利用聲波之基本原理在電腦上進行聲場的模擬並加以改變其變因(頻率、相位、聲源數、聲源間距、強度、邊界反射),進而明瞭聲場之各項特性及應用與控制方式。經電腦模擬聲場圖中,我們觀察到,兩聲源干涉所形成之圖形為多組雙曲線所組成,近似於光學之雙狹縫干涉,增加聲音頻率與聲源間距離皆可使腹(節)線數目增加。如同現實世界中所知的,隨著頻率的增加,將會具有指向性的產生並且在聲源數目越多時越明顯,但發現頻率增加至一定值之後,指向性反而會降低而形成冠狀面。在延遲了多點聲源間相位之後,聲場分佈有偏轉之現象,利用相位延遲的方法,在多聲源中,將兩旁之聲音偏向中央將可造成聲音的聚焦。在兩聲源干涉中,調整其中一聲源之強度,將可完全消除兩音源連線間一點之聲音,可適當的應用在工業上消除噪音。聲場分佈在具有邊界的環境下,我們試著找出聲源位置及邊界條件對聲場分佈的影響與關係以模擬室內聲場,但在簡化的數學模式下,即無法有我們所希望之最均勻聲場分佈產生。最後我們將實驗中的結果與文獻上的實驗數據加以比較,以探討其誤差。 The optical course in senior high school , which introduced many characteristics of optical wave. However, both of sound and light have the characters of wave; therefore, sound wave should have the characteristics, such as interference, reflection and focalizing. Nevertheless, there are not many details of sound wave in the section of acoustic on our textbook. So we began this research, and discuss the different phenomena by changing many kinds of variables. In our research, we simulated the sound field on the computer, based on sound wave’s principle, furthermore we change many variables, which like frequency, phase, source number, distance, intensity and reflection. It helps us understand the characteristics of\r sound, how to control sound and how to apply these findings. According to the result of computer simulation, we discovered that the graph of two acoustic source’s interference comprised by many pairs of hyperbola, just like optical double slit interference. As the frequency or the sound source distance increased, acoustic direction became more and more obvious. But when the frequency was high enough to over the extreme, instead increasing, the acoustic direction would lower down like a crown. After we make phase differences on one of the two sound sources, sound field generated\r deviation. So if we use this method in multiple sound source, and delay the middle source, the sound field might be converged. In such two-sound-source interference pattern, when we control the intensity of one, a certainly point on the line of the two sources disappeared When the sound field enclose by borderline, the standing wave appear, and we discovered many funny phenomena. We put large amount of source in a narrow slit, the phenomenon of diffraction appeared. Finally, we discussed the discrepancies between interference pattern previously done by others experiments and the simulated one conducted by us.
包埋酵母菌的幾丁球珠對含銅、鐵、鋅、鉛離子之廢水處理及應用
本實驗的目的,就是希望利用幾丁質除污的效果,再配合酵母菌所能累積金屬的能力,以酵母菌包埋於幾丁質的方法,吸附廢水中的重金屬離子。用Langmuir理論求得飽和吸附量,進而求出休眠酵母菌-幾丁質所能吸附金屬離子0.14─0.027(g/g)的數量,與活化酵母菌-幾丁質所能吸附金屬離子1.15─0.050(g/g),並比較回收效率,以應用於處理工業上工廠所排放的廢水。 筆者在偶然的機會將處理過的蟹殼幾丁質固體置於石綿心網上,竟然在數分鐘內像塑膠般熔化,探討原因竟然是石綿心網上的某些金屬鹽所造成,因此筆者希望能透過這發現,用簡單的方法製造出低去乙醯化、高強度及耐中度酸的幾丁基質,並可應用在廢水處理上。;The purpose of this experiment is to explore the effect of using chitin and yeast plat to clarify the heavy metal cation, and that yeast plat works on the accumulation. In the process, the yeast plat is embedded in chitin to absorb the metal cation, therefore, by the theory of Langmuir, the impregnate absorption of dormant yeast-plat-chitin (0.14-0.027[g/g]) can be obtained and yeast-plat-chitin (1.15-0.050[g/g]) can be activated as well. In this way, the efficiency can be compared to apply to work on the effluent in industry. By putting shell-chitin-solid on the wire gouze by chance, we found it melted like plastic in just a few minutes. Some kinds of metal salt on wire gouze cause this change. Therefore, this easy ways can be used to makelow-deamide function group become of high strength and durable under acid environment. The results obtained from this experiment can be applied for the processing of waste liquid.
電離轉輪
This research primarily aims to observe how does the electric work, why does it work and the relationship between the surrounding circumstance and the repulsive torque. The electric whirl is made of an enameled wire bent into right angle with sharpened ends. When an AC high voltage is applied, the electric field intensity around the whirl ends is strong due to the small curvature radius of the ends. The molecules in air at both ends are ionized. This cause the phenomenon of point discharge. The positive and negative ions produced by alternating current forms AC ion wind, and produce a torque to make the whirl rotate. The object of this experiment is to observe the relationship between the surrounding circumstance and the torque repulsion. We design an apparatus to measure the angular velocity of the rotating whirl. We also calculated the kinetic energy of the whirl and the work done by the torque. The repulsive torque can be obtained by Work energy theorem. Result: (1)The angular velocity of the electric whirl is direct ratio to repulsive torque. When we want to find out the relationship between the manipulate reason and the repulsive torque, we can just compare the angular velocity with the manipulate reason. (2)The angular velocity of the electric whirl is only related to the peak voltage, and it does not make difference whether we apply AC high voltage and DC high voltage. (3)When the humidity is over 68%, the electric whirl cannot function normally. (4)Under the low-pressure circumstance, the electric whirl will rotate with glow discharge and the angular velocity will decrease to zero gradually.本實驗是探討電離轉輪的性質、原理與周圍環境的關係。「電離轉輪」為漆包線兩端折成直角並磨尖而成,接上交流高壓電源時,其尖端曲率半徑小,電場強度相對大,會游離尖端附近的空氣分子,產生尖端放電的現象,而交流電交替產生的正、負離子會形成交流離子風,並產生轉動力矩,使轉輪轉動。我們設計一個裝置,使其能偵測轉輪轉動的狀況,運用測得數據計算出轉動時的動能和作功狀況,套用功能定理便可求得轉輪通電時產生的斥力矩。實驗結果顯示(1)轉輪的角速度和尖端斥力矩成正相關,所以當我們想得知尖端斥力矩和實驗操縱變因的關係時,只要比較角速度和操縱變因就可以了,這簡化了原本繁複的計算和冗長的數據處理過程。(2)轉輪的角速度只和峰值電壓有關,和直流或交流沒有直接關係。(3)轉輪在超過溼度68%之後,就不會正常運作。(4)在低壓條件下,轉輪轉動時會伴隨淡紫色的輝光放電(glow discharge)現象,而抽氣塔中與轉輪尖端最接近的一點,也就是電場最強的一點,會和尖端同時產生光芒,相互輝映。
Is the fruit safe?-吊白塊的簡易自製試劑
吊白塊是一種在現切水果中常見的食品添加物,它可使剛切的水果不易被氧化,並同時具有漂白的效果,但此種添加物會對人體造成許多疾病。本研究針對吊白塊作嘗試性的初級檢驗,選用一般常見的氧化劑和染料,自行研發簡易的檢驗方法,且進一步製作安定性佳且攜帶方便的試紙。本實驗結果發現,由衛生局提供的「藍吊試劑」本身不甚穩定,且顏色變化不明顯;在自製檢驗試劑方面,效果最佳的是過錳酸鉀,濃度可測至0.0005M,且反應相當快速,唯試液容易與水果表面的Fe(II)離子反應;孔雀綠和晶紅酸等染料效果亦佳,且變色相當明顯,但反應時間較長。Rongalit is a bleaching agent commonly used as a food additive. It can prevent fresh fruits to be oxidized (without color-changed), especially when they were cut for sale. However, as for this additive, it is not good on health and is necessary to be detected. The test-paper currently used, the so-called “blue-test paper”, can be obtained from the Department of Health (Taipei). However, its stability is poor; the color change is not clear when it reacts with Rongalit. For this reason, I developed simple methods for detecting Rongalit by using various oxidizers and dyes. A test-paper, with better stability and easily for carry, was successfully developed. The findings show that the use of KMnO4 on the homemade test-paper provides the best result. The reaction time is short and the limit of detection can be improved to 5 × 10-4 M. The color changes were also clear when malachite green and fuchsin acid were used, but the reaction times were longer.