全國中小學科展

未得獎作品

防鏽小尖兵(分子自組薄膜的探索)

自組薄膜(SAMs, self-assembled monolayers)乃是具有特定官能基的化合物在不需外力作用 下自動吸附到基質表面上而自行排列成有自序規則之結構。SAMs技術因製備容易且穩定,在 應用上深具潛力。目前此方法中,以硫醇接在Au上的研究最為廣泛。本作品希望藉著SAMs 方法將硫醇分子吸附於鐵片或其他金屬表面上,以達成防鏽與抗酸目的。我們分別透過接觸 角量測研究正十二硫醇在鐵片上形成分子薄膜的可能性;利用酸與金屬產生氣體的速率研究 分子薄膜抗酸蝕的情況;測試分子薄膜的耐熱性;根據鐵片生銹時pH值變化、重量變化與[Fe2+] 含量差異來探究分子薄膜能否防鏽;最後找出適合形成分子薄膜的濃度與溫度效應。由實驗 結果我們發現SAMs薄膜確實能吸附於鐵(及鎳、銅、鋅等金屬)的表面上並增加抗酸與防鏽蝕 能力,薄膜對熱的穩定性極佳,35℃時結合效果較佳,而濃度的提高有助於SAMs的效用。 Self-assembled monolayers(SAMs) are elements which have specific functions.SAMs,ordered molecular aggregates can automatically adhere to the surface of substrate without any force.The applcation of SAMs’technique has high potential not only because ther are easy to make but also because they are stable.Exposing molecules such as alkyl thiols to an Au(0) surface is now in widespread use. In this work,we apply the thiols chemisorb onto the Fe or other metal surface to make it rust-resistant and acid-resistant.We study the following issues to find the appropriate conditions of forming monolayers in varying concentration and temperture: I. The possibility of forming n-dodecanthiol molecular monolayers on Fe surface by measuring the contact angles. II. The ability of antiacid corrodibility by comparing the rates of producing gas from acid and metal. III. The heat-resistant of molecular monolayers. IV. Whether it’s antirust by detecting the changes of pH,weight,and the concentrations of Fe2+ during the iron rust. According to the results,we conclude SAMs do adhere to the surface of Fe(and other matal like Ni,Cu,Zn), which increases the ability of antiacid and antirust.Besides they are stable to heat, have good combining effect at 35℃, and it is beneficial to the effect of SAMs through raising their concentration.

仿生智慧型熱控制系統

通常使用隔熱材料可以降低熱量傳遞,而使用風扇、散熱片、熱導管等用來單向散熱。但如何在一個系統上同時滿足隔熱和雙向傳熱的需求呢?因此我研究設計了仿生智慧型熱控制系統,能隨環境改變而快速轉變成隔熱或轉變成雙向傳熱並控制熱傳遞的方向及大小,這可以應用在房屋、汽車、恆溫系統等。我先自製了自動傳熱量測系統,測試並找出好的隔熱和傳熱材料及構造。為了能快速控制熱的方向及大小,我又發展了第一代替換式、第二代熱柵式和第三代熱管式熱控制系統;經過多次實驗,利用低沸點有機溶劑和控制系統,我成功地完成仿生智慧型熱控制系統,讓熱隔絕或快速流進流出,比傳統的方法改進很多,也達到節約能源的目的。Insulation materials are usually used to reduce heat transfer rate, while fans, radiators and heat pipes are applied to increase heat transfer rate and bring heat away. But is it possible to have both functions of insulation and heat transfer together in a single system? This research is to design and develop an intelligent heat control system, with both function of insulation and function of transferring heat together. Besides, this system can control the direction and amount of heat transferred. Such a system can be applied in house walls, cars, thermostatic system, etc. I developed an automatic heat measurement system which was used to test the properties of heat transfer for different materials and structures. Three generations of intelligent bi-directional automatic heat control system were then developed to get fast heat transfer and function of heat control. They were phase 1 replacing-type system, phase 2 heat-grating system, and phase 3 heat-pipe system. After tens of experiments, I successfully control the amount and rate of heat transfer via low-boiling-point organic solutions and controller. The designed system is bi-directional, and is more innovative and efficient than conventional uni-directional heat control methods. Besides, this system also has huge contribution in reducing energy consumption.

天然A 尚好-探討天然果實無患子的殺菌力與時效性

The natural fruits of soap berry are worth-while detergent in the aspect of environmental conservation. It has been shown that the soap berry fruits can reduce the itching of head and inhibit the growth of fungi. Here we would like to test the inhibitory activity of soap berry fruits on the bacteria. This might benefit to the further application of the soap berry fruits. First,the soap berry extract was prepared and mixed with E.coli or S. aureaus. The number of bacteria was counted to realize the inhibitory activity of the soap berries. We found that the soap berry extract can inhibit the growth of E.coli and S. aureaus. Higher concentration of the soap berry extract and longer duration for the mixture make better inhibitory activities. 天然的無患子果實是一種極具環保價值的清潔劑,已知它有抑制黴菌生長的能力,可以 去頭皮屑、止頭皮癢。因此,我們想進一步探討無患子果實對於細菌生長的抑制能力,以期 了解無患子清潔劑在廣泛推廣上的應用價值。 在實驗設計上,我們自製無患子萃取液,並選擇日常生活中常見的大腸桿菌及金黃色葡 萄球菌,並然後使菌液與適量的無患子萃取液混合,計算菌液在加入無患子之前、後的細菌 個數,藉以了解無患子的殺菌力。我們發現無患子萃取液對大腸桿菌及金黃色葡萄菌有明顯 的殺菌力,且無患子濃度愈高、作用時間愈長,殺菌力愈好。

智慧型控制界面系統

對數位、光電的初步了解是在小三的科展,當時我是利用一個大型的凸透\r 聚光鏡,匯聚太陽光照射在不同的金屬導線之一端,而另一端接在冰冷的地\r 板上,用不同的金屬材料來做比較。利用微電流計測得不同的材料有不同大\r 小的電流,而且有不同的熱量。到國中的電學時了解到電阻熱功率的關係,\r P=IV 才知道,除非有『超傳導系統』否則任何物體必有電阻。進入國中時,\r 在電工課程中了解了數位的控制,產生了這方面的興趣。\r

了解抗氧化的「旋」機-利用自製的旋光儀來探討旋光性與抗氧化成分之間的

In this research we derived heating effects on anti-oxidation by optical rotation analyses. A simple and accurate Polarimeter was devised with polar screens, laser, and photo resistor; the laser was used for light source, and the photo resistor for detection. Four kind of fruits, Hyloceeus polyrhizus, California plum, kiwi and tomato were experimented by heating them in boiling water and microwave oven. Their optical rotations versus time duration were calculated. Then we used ABTS/ the H2O2/HRP analysis system from Arnao's research to obtain the heating effects on anti-oxidation by calculating the vitamin C densities versus lag time. We found that there was a tendency of increased anti-oxidation at the beginning by heating, but decreased afterwards. Better oxidation was achieved by using microwave for Hyloceeus polyrhizus, by using boiling water for kiwi and tomato, and by using both methods for California plum. The same tendency was also found in the optical rotation analyses. Therefore we successfully developed a new method to measure the antioxidant activities by the optical rotation. We can also apply this method to simulate the fruit digestion process in the stomach, which let us understand further about anti-oxidation ( or optical rotation ) versus time. 本研究利用偏振片、雷射光為光源、光敏電阻為偵測器,組裝成一個簡易且精確的旋光度計。 我們利用此旋光度計對奇異果、火龍果、聖女蕃茄、加州李子四種水果以微波、水煮及油浴三種方式來處理,求出水果的旋光度與熱處理時間的關係。再藉由Arnao 研究的ABTS/ H2O2/HRP 分析系統,以不同濃度的維生素C與延遲時間畫圖作為標準曲線來測量總抗氧化活性,並比較熱處理後抗氧化活性的變化趨勢。 透過本研究可以了解不同熱處理方式對四種水果之抗氧化活性初期皆有增加的趨勢,但隨著時間增長則抗氧化活性降低。其中奇異果與聖女蕃茄用油浴,火龍果用微波處理,加州李子則是用任何熱處理方式均可得較佳的抗氧化活性,而熱處理後在旋光度測量上也有相同的趨勢。因為此兩種方法有一致的反應趨勢,所以證明我們成功地開發出一種可以利用旋光度來測定抗氧化的新方法。 最後,應用本方法進一步模擬水果在胃部裡的消化,讓我們更可以了解在整個消化的過程中抗氧化活性(旋光度)隨時間變化的情形。

再現白堊紀-冥霜煉獄的征服者

此研究是探討在目前全球因聖嬰現象後北極暖化,造成溫度持續在三十年內以每年上升攝氏零點五度,目前多數資料以顯示,對於地球內的生物生態產生了微妙的變化,在本文中將引述著名雜誌─科學人雜誌所刊登之關於全球暖化造成的生態環境影響;然而早在三億五千萬年前就已存在地球上的古老生物─蟑螂,順利的度過了多次的大滅絕,走過冥霜與煉獄。但是否會因為暖化作用而造成其生態影響呢?他又會不會成為少數存留並且大量繁殖的征服者呢?所以我們開始查詢白堊紀之資料,在研究、討論並製作改造完成實驗室氣溫控制冷熱溫差調節器,並從專業研究蟑螂生態的業界專業實驗室取得同一時期的實驗蟑螂物種,以期待本實驗更能具有更高的正確可信度;於特殊自行改造的觀察箱內進行整個實驗,已改變溫度並測量其進食狀況,瞭解蟑螂在溫度變化下的生態狀況。\r \r It’s easy to find the cockroach at any corner, such as school or house. They also hide in the refrigerator and stove.Thus,we are curious why they have durable vitality. This is the reason why we want to uncover the mysterious veil. According to data, we are curious about the environment of the cockroach and the temperature.Therefore,we want to imitate the situation of the ecosystem temperature at that time and inquire into its mystery. The purpose of Research is to make the violent changes, then discussing the meal which has attained its biggest existence rate. This uncontrolled experiment will influence the accuracy by factors.Therefore,we go to visit the laboratory personally and obtain some species of cockroach. Through the professional explanation and introductions, we make sure the direction of this experiment further. In this experiment we measure their appetite and the controls of the temperature everyday. They almost can crawl quickly along any material. We adopt the professional suggestion to measure with CO2 and O2.When the cockroach inhales CO2,we can observe the construction of the each part carefully. Through long-term observation, the food of the cockroach decreases, when the temperature rises to 20.6℃ or declines to 16.3℃,and it will stop moving when the temperature rises to 31.8℃ or declines to 8.7℃. When the temperature rises rapidly or reduce more than 15℃,the cockroach will look for shelter. Besides they easily get fainted when cockroach inhales CO2 without soil. The dinosaur were all buried underground, but why can the cockroach survive up to now? Probably, large land is their savior! Our conclusion is (1)The temperature that cockroach can exist from 49℃ to 3℃.(2)The suitable environment of cockroach growth is between 28.5℃ and 25℃.(3)The cockroach maintains their existence by eating under the low temperature 20℃ to 15 ℃.(4)Above 32℃ and under 7℃ the antenna is close to ground, its life is weaker.(5)The cockroach almost can live at any dilemma. But it can’t keep the prosperous life when it’s short of water.(6)From the above cockroach will be king of the world forever.

雷射光的研究

這份報告的主題是藉由實驗,來探討雷射光的性質及它的應用,並實際製作利用雷射光原理的小器具。1.證明雷射光是否為單色光:先將雷射光射入不同顏色的玻璃紙,利用光無法穿透不同顏色玻璃紙的性質,以及將雷射光照射三稜鏡,觀察其反射的光線,藉此來證明雷射光是否為單色光。2.雷射光的直進性質:利用彎管或其他不透光物品將光線阻擋,觀察其是否能穿透物品,並且用不透光物質,使我們能夠看出雷射光的軌跡,來證明雷射光的直進性質。3.雷射光的折射與反射:將雷射光射入不同的物質中,觀察其折射角度,來得知雷射光在不同介質中的傳播速率不同,也觀察其是否有反射的現象。4.雷射光的應用:研究運用雷射光製成的物品,如雷射印表機、光碟機等等,並了解其製作原理。5.自行研製雷射小器具:利用雷射光的原理,來製作簡單而獨特、有效率的小器具。The topic of this report is to study the quality and applications of laser by experiments, and actually make a tool by using the principles of laser.1.Prove if laser is a one-color light: By lasing laser through a triangular prism, observe the light it reflected to prove that laser is a one-color light.2.The quality of in-line approach: By using tubes or other lightproof items to block out the light to observe if it can penetrate things, and also let us see the trace of laser to proof the quality of in-line approach.3.The refraction and reflection of laser: Study the differences of refracting angles by lasing laser into different items, to know the speed of laser in different mediums, and also observe if it will have any reflections.4.The applications of laser: Understand how laser products are made by studying them, like laser printers and CD players. 5.DIY laser tools: Make simple but unique and efficient tools by using the principles of laser.

間歇泉的研究

間歇泉是一種十分奇特的地質景觀,地下水受到火成岩入侵所帶來的穩定熱源加熱,產生水蒸氣,利用水蒸氣形成的空氣柱壓力推動水由地底噴發出地表,也因為熱源穩定使得噴發時間差接近一定值,形成所謂的「週期性」。而根據實驗結果發現,管壁較薄的管子,在噴發之後,會使管中殘餘的水稍作降溫,加上補充的冷水使系統降溫;管長愈長時,蓄水槽中的水量較多,提高溫度所需的時間也較長,而延長了噴發的週期,最後歸納出間歇泉形成及存在的三個主要條件:(1)穩定的熱源;(2)細長的孔道;(3)豐沛的地下水。 The geyser is a very amazing sort of geologic scenery. Its principle is that the heat source of invasive volcanic rock heats the underground water to produce steam that results an air-columnar with a large pressure to erupt through the underground on the surface. Because of the steady supply of heat source, the period between eruptions is closed to a constant called “periodicity.” According to the result of the experiments, the tube that have thin wall can lower the remaining water’s temperature a little and the cold water’s supply can also lower the plumbing system’s temperature after eruption. Besides, the water in the longer tube needs more time to higher its temperature to protract the period because it have more water in its reservoir. Eventually, there are 3 essential conditions of the geysers’ existence concluded: (1) steady supply of heat; (2) a thin and long standpipe; (3) abundant underground water.

金奈米粒子的合成與其光譜特性

當世界各國正全力朝奈米科技發展,而奈米微粒對環境及人類健康影響與否未明朗之際,有關奈米微粒對人類健康影響之探討是刻不容緩之事。本研究的近程目標是合成金奈米粒子,遠程目標是擬探討金奈米粒子的生物毒性。此份研究主要是描述金奈米粒子的最大表面電漿吸收光譜特性及其最大吸收波長,而金奈米粒子的合成是利用四氯金酸( HAuCl4 )與還原劑—硼氫化鈉( NaBH4 )、聯胺水合物( N2H5OH )或檸檬酸鈉在陽離子界面活性劑的溶液( CH 3(CH2)15N+(CH3)3Br– ,溴化十六烷基三甲基銨,CTAB ) 當保護劑中,利用氧化還原方法直接生成金奈米粒子,並探討四氯金酸的濃度、還原劑的濃度、界面活性劑的濃度及反應溫度,對金奈米粒子生成之影響,另外也探討金奈米粒子的穩定性。有關金奈米粒子的光譜特性則利用UV/Vis 光譜儀測試。研究結果發現在相同的條件下,利用冰浴,以NaBH4 當還原劑所合成出的金奈米粒子之平均粒徑為11.70 nm ,而以N2H5OH 當還原劑所合成出的金奈米粒子之平均粒徑為20.25 nm, 有關金奈米粒子之結構及大小藉由穿透式電子顯微鏡( TEM ) 拍攝出的影像得以驗證。;This study mainly focused on the properties of the maximum surface plasmon absorption of gold nanoparticles and their wavelengths. The synthesis of gold nanoparticles made use of HAuCl4 aqueous solution and reducing agent, through the oxidation reduction method, with reductant, sodium borohydride ( NaBH4 ), hydrazine ( N2H5OH ) or sodium citrate solution in the presence of the cetytrimethylammonium bomide ( C19H42BrN,CTAB ) aqueous solution as protecting agent. The influence of concentration of HAuCl4, reductant, surfactant, and temperature on the synthesis of gold nanoparticles were explored. In addition, the stability of the gold nanoparticles was also explored. Measurements of spectral properties of gold nanoparticles were done by UV/Vis spectrometer.When NaBH4 was used as a reductant, the average diameter of gold nanoparticles was 11.70 nm. When N2H5OH was used as a reductant, the average diameter of the synthesized gold nanoparticles was 20.25 nm. The structures and sizes could be identified by the transmission of electron micrograph (TEM) images.

當急驚風遇上「玻璃片」-以簡單原理研製便宜準確風速計

本專題研究之目的,在於運用簡單的原理自製出準確、廉價、適用於低風速範圍的風速計;方法是藉由將一連接轉軸的玻璃片迎風,探討迎風時,玻璃片偏轉夾角和風速之間的關係。實驗過程中同時發展出可以用馬達旋臂的裝置與v=rω的原理,產生穩定可計算風速的環境。研究結果發現:在低風速的環境下,θ 範圍小時玻璃片與地夾角和風速大略成正比的關係,所以我們可以得到近似式” v≒aθ+b”,參數(a,b)依玻璃片而定。另外θ 範圍大時,我們可以使用二次逼近曲線的方程式與內插法來作角度與風速的對應。藉由控制玻璃片的厚度、質量與形狀,我們可以製造出相對應風速範圍的風速計。The purpose of our research is to use easy theorems to make accurate and inexpensive anemometer which is available in low wind velocity. To make such anemometers, we made a piece of glass, which was connected to a axle, to face wind; then, we could figure out the corresponding relation between wind speed and the angle created by the original and the resulting positions of the piece of glass. While we were experimenting, we found that we could make a steady-wind-speed environment by using motors, sticks, and the theorem ”v=rω”. The research showed that the angle created by the original and the resulting positions of the piece of glass and wind speed are in direct proportion in low wind velocity in small θ range. Consequently, we\r can derive the formula ” v≒aθ+b” , for each piece of glass (a,b) can be different. In addition, when in bigger θ range, we can use quadratic approximate equation and interpolation to describe the corresponding relation between the angle and wind speed. By adjusting the thickness, mass , and the shape of the glass, we can make anemometers corresponding to different wind velocity ranges.