DNA Detection by EGFET using GaN Nanowires Gate
DNA感測器近年來蓬勃發展,應用層面包括基因工程,醫學及藥物的開發等,然而目前較常使用的感測方法,需要繁瑣耗時的標定過程,且所使用的化學藥劑對環境容易造成傷害,鑒於以上方法的不完善處,我們決定設計一套新的感測系統,此研究結合了氮化鎵奈米線(GaN Nanowires)及延伸場效電晶體(EGFET)的優點,成功的發展出創新的DNA感測系統,氮化鎵奈米線的高生物匹配性及高感測面積,能有效提高靈敏度,延伸式場效電晶體的設計,史感測器具由免標定及時感測的特性,且易於組裝及操作,我們將探針DNA(probe DNA)修是在氮化鎵奈米線作為之延伸閘極上,由於DNA在中性水溶液中帶負電,且DNA之間具有強烈的互補特性,因此當目標DNA(target DNA)與探針DNA接合,形成雙股DNA,氮化鎵奈米線(閘極)的表面電位即會有所變化,並造成FET特性的改變,藉由此性質及能成功感測DNA,研究結果顯示,此研究所發展出的DNA感測器,愈有相當高的靈敏度(10-18),相較於其他以FET技術所設計出的DNA感測器,靈敏度提升了三個數量極,此外此感測器亦具有高選擇性,即使單一鹼基對的突變也能成功辨別;-hybridization based detection techniques are widely developed due to their promising applications in genetics, medicine and drug discovery. However, current DNA detection techniques based on labels or reagents are time-consuming, environmentally-harmful and complex to implement. In this study, we have successfully demonstrated a label-free extended-gate-field-effect-transistor (EGFET) sensor utilizing a GaN-nanowires electrode with DNA probes immobilized, capable of specific DNA sequence identification. The principle behind the design is based on the change in surface potential and charge transfer after hybridization. GaN nanowires, being bio-compatible, provide direct transfer path and high surface area, thus offer an unprecedented opportunity of DNA sensing with high sensitivity. In addition, our EGFET design facilitates easy assembly and operation of DNA detection. Comparative studies on complementary and non-complementary DNA were performed to verify the specificity of the sensor. By adapting GaN nanowires structure, the assay time of DNA was shorten to within thirty minutes. Moreover, our sensor displayed an ultra-high sensitivity in the level of attoM: three orders of magnitude higher in resolution than that of other FET-based DNA detection methods.
酒杯發出之音符
When you draw a wet finger around the edge of a half filled wine glass, a sweet musical sound comes forth. The pitch of this sound is directly correlated to the amount of liquid in the glass- the higher the height of the liquid is, the lower the frequency is. It means that the shorter the air column in the glass is, the lower the frequency is. This phenomenon differs from the variance in pitch in a wind instrument. In a wind instrument such as a flute, the shorter the air column in its chamber is, the higher the resulting pitches are. In order to study the wine glass phenomenon, we used a piezoelectric crystal loudspeaker connected to an oscilloscope. We recorded the resulting data by using a digital video recorder to capture the images of the waveform of sound, and than analyzed the waveform by using the computer. Our conclusions are as follows: 1. The frequency of sound thus produced was the same whether we draw our finger around the rim, or we strike the glass rim. The higher the height of the liquid is, the lower the frequency is. But the frequencies vary when we strike the glass and when we blow on the edge. 2. When we used a glass without liquid in it, the frequency emitted when we drew our finger around the edge, this frequency varied inversely as the cube root of their weights. 3. In a glass with liquid, the emitted frequency did not have any correlation to the weight of the contents. By taking two identically filled glasses and placing in each a solid object of the same size but different weight, we were able to see that there was no change in the frequency emitted between the two glasses as long as the height of the liquid remained constant. 4. According to “The Flying Circus of Physics”, if we tap the side of a glass of beer, because of the air bubbles in the beer, the frequency emitted will be lower than that from a glass of pure water. This is according to the book, because the speed of sound is lower in air than in water, therefore the speed of sound in an air-water mixture would be lower than in pure water. The resonant frequencies of the mixture will also be lower. However, in our experiment, we discovered that\r when the glass contained air bubbles, the frequency emitted higher. Our explanation is that the sound emitted since the rim of the glass oscillated transversely, the frequency depends only on the retard of the rim and that the frequency is independent of the speed of sound. The intention of this research is to clarify the many misconceptions of this interesting phenomenon.以溼的手指在玻璃酒杯邊緣摩擦,會有悅耳的聲音,而且頻率會隨著內裝液體減少(空氣柱變長)而變高,這種變化與管樂器隨空氣柱的變長而音調變低不同,為了研究它的原因,我們利用壓電晶片喇叭連接到示波器上,並且利用數位錄影機錄下示波器上的訊號,再以電腦分析出瞬間的頻率,結果發現:一、摩玻璃杯與敲玻璃杯,杯所發出之頻率相同,都是所裝液體愈多發出之頻率愈低。但敲玻璃管與吹玻璃管所發出之頻率不同。二、不裝液體之高腳杯,摩擦時所發出之頻率與重量之立方根成反比。(與鐘相同)\r 三、裝液體之高腳杯發出之頻率,不再與總重量有關,而是與液體之高度有關,保持液體高度不變,即使在杯子中央加入不同重量之固體,杯子振動頻率還是不變。若改裝不同密度之液體,則密度愈大頻率愈低。四、在“The Flying Circus of Physics”書中提到輕敲裝有啤酒之杯時,會因杯中含有氣泡而聽到較低之音調,書中解釋是”空氣中之音速低於水中之音速,混有空氣之水中音速變低,其共振頻率也會降低。”但我們的實驗結果是有氣泡時頻率反而高。我們的解釋是杯子所發出之聲音是由於杯面之振動也就是杯壁的橫向振盪,振盪頻率與液體對杯壁之阻尼有關,但與液中聲速無關,密度愈大之液體阻尼愈大。有氣泡時接觸杯壁之液體變少,阻尼較少所以頻率高。希望本研究能使大多數人對這有趣之現象不再有誤解。
推著離子跑
在本次實驗中,我們發現溶液中的帶電離子,會因為離子團的熱運動,和電偶極的庫倫吸引力(electric dipole)的交互作用下,使得電解質溶液的I-V curve(電流-電壓 曲線),具有類似磁滯曲線(Hysteresis curve)的效果,同時我們運用光學干涉的原理,證實此時在電場作用下,離子團會互相順著電場方向作條列鍵結,而加熱實驗也證實,熱運動會使溶液的I-V curve(電流-電壓 曲線)變的不一樣。另一方面,我們也發現,在給予電解質溶液一外加的衝擊電壓時,該溶液的電荷分布,?會因為彼此的互相擠壓以及自由擴散的作用下,而形成一震盪分布,其所顯現出來的,則是電壓的震盪變化。最後由於震盪波紋的變化,在起始時與中段之後有著明顯差異,我們對此變化提出看法和證實,相信內容是精采可期的! In this experiment, with the interaction of the heating action of ionic atmosphere and electric dipole, we find that ionic in the liquor makes the I-V curve in the electrolyte liquor show up with the effect similar to Hysteresis curve. Meanwhile, we practice the principle of interference to prove that at this moment, under the influence of electric field, ionic atmosphere will connect to each other in line following the direction of the electric field. It is also proven that in the heating experiment, heating action will make I-V curve in the liquor different.On the other hand, we also find with extra electric impact, the charge distribution of the liquor will form a oscillation, that is, the changes of the voltage oscillation under the inter-collision and the free spread. We offer our viewpoints and proofs about the obvious changes of oscillation wave in their beginning stage and after their middle stage. We believe that the marvelous content is surely worth of your expectation.
「渦」藏「聖」機--以渦流脫離重新詮釋聖嬰發生的原因
If we place a block in continuous, steadily flowing water, some periodic eddy currents will appear behind it. In my report, I would like to introduce a new way to explain how the periodical movement of eddy currents would help to triggering El Nino. According to my experiment, these eddy currents have a certain life cycle, and the eddy current give a force, which drag water form the area they just went by. It will cause water level became lowest for a period of time. These phenomena are also shown in the real data of “Sea Surface Height Anomaly”, it is a quiescence period, and then changes into the highest one it is interesting that highest one always follows by the starting of El Nino. Another important result from my experiment is that, in the same fluid, the frequency of eddy currents is controlled by 2 variables: Size of the block and velocity of the flow, From this result, then get the frequency of eddy current-occur every 3.2 years. It is just correspond with frequency of historical data the El Nino from the 70’s to the present.
本報告嘗試以南極繞極環流在南美洲南端產生週期性渦流脫離的現象來解釋聖嬰的發生根據水槽實驗的結果,水流在通過障礙物後渦流脫離瞬間,會形成一水位低的空區,之後在周圍的水大量湧入,水位突然升高,並有一段時間的振盪。另外,實驗結果也顯示,渦流形成和脫離頻率大致上和注水流速成正比,且和障礙物的大小成反比。根據此結果,對照實驗結果,我認為1993 年3-4 月,1996 年1-6 月及2001 年7-10 月三個「海平面高度異常」的最低值密集帶,此極可能是渦流脫離的時段。且對照「海平面高度異常」實際資料後,發現「海平面高度異常」的「最低值密集帶」後均伴隨水面「寧靜期」,接著就出現周圍暖水流大量湧入的「最高值密集帶」,此時南美洲東南側海水溫度驟增,接著馬上接續著聖嬰的到來。「海平面高度異常」分析的結果,指示渦流脫離的「最低值密集帶」和顯示著聖嬰到來的「最高密值密集帶」間約間隔半年左右。我們推算水的史托爾數約為1,以這個值代入實際南極繞極環流通過南美洲南端,得到渦流脫離的頻率約每3.2 年一次,和長期聖嬰發生的平均頻率非常接近。
生生不息-正五邊形的繁衍及算術法則
This study was to explore the nature of two basic constitutes of the regular pentagon,With these two constitutes, the regular pentagon could be multiplied into any times in size. We used four multiplication methodsto show how the regular pentagon enlarge and to verify that the enlarged regular pentagons derived from computer did exist. By integrating these four multiplication rules, we were able to arrange regular pentagon of any length of side, and evidenced the equation was ( If m,n is the number of A,B of a regular pentagon respectively ) When we tried to verify if any regular pentagon could be constituted by other smaller regular pentagons, we found that it was un-dividable only if the length of pentagon side were (the number of A, B were the 2n and 2n-1 item of Lucas Sequence), otherwise, any regular pentagon is able to be constituted by other smaller regular pentagons. The divided forms could be multiple. We also found that any pentagon could be divided by two successive un-dividable pentagons, which is called “standard division rule”. We expected to derive all kinds of division by analysis of two successive un-dividable pentagons in standard division rule.
這個研究起源於一個拼圖玩具:利用兩種黃金三角形排出指定大小的正五邊形。我們的研究動機是:一、 假如無限量供應A 和B,能夠拼出哪些邊長的正五邊形?二、 哪些拼好的正五邊形不能拆成一些較小的正五邊形?我們將研究的主要結果分述如下:
排印OnLine-PHP 在文字圖形的應用
從小習染之餘,對篆刻藝術的濃厚興趣及對電腦程式之熱愛,萌生將篆刻藝術與電腦 科技結合,於是應用PHP(Professional Home Page)的文字圖形(Text Image)處理功能 將中華文化之篆刻藝術透過網際網路推廣到世界各角落。本研究規劃建置了一個 FreeBSD Server 可完善處理PHP 功能的作業平台、應用PHP 的文字圖形處理功能,編 寫可在線上DIY 設計印章的程式,以及藉由Java Script 的技術在Client 端建立一個人 性化且相容性高之使用者界面網頁,達到提供多語系、多功能、依使用者偏好作調整 印章及輸出分享的功能。為使非漢語系國家能深刻體驗中華篆刻藝術,本研究同時建 立一個超過三萬筆之由英文名音譯中文名的資料庫,提供給使用者切身的服務。 Inspired by the interest of the art of seal engraving and the love for the computer programming beginning from my childhood, I combine the art of seal engraving and computer technology, and apply the Text-Image's function of PHP to promote the seal-engraving art of Chinese culture via the Internet to everywhere around the world. This project constructs a FreeBSD Server to process PHP platform perfectly, applies the Text-Image's function of PHP to write a program for online DIY pattern design, and uses Java Script to establish a human and compatible user-interface web page for clients to provide multi-language, multi-function, and being able to adjust pattern according to the user's preference and output sharing functions. This project also sets up a database of English-Chinese translation of over thirty thousand English terms to help people who are not Chinese to experience the art of seal engraving.
無孤力點無交錯分割的區塊細分及五個新的Riordan組合結構
將一個集合{1,2,...,n}分成數個非空的集合(組,區塊),稱為此集合的一個分割。如果可以找到1 ≦ a 已知無孤立點無交錯分割以Riordan 數{rn}n≥0 =1,0,1,1,3,6,15,36,... 來計數。在這篇文章中我們研究無孤立點無交錯分割的一些性質。
首先我們考慮無孤立點的無交錯分割按區塊的細分。我們得出:集合{1,2,...,n}恰含k個區塊的無孤立點的無交錯分割的個數為:
其次,我們證明bn,k和多邊形的剖分有令人訝異的關連。令dn,k是用不相交對角線將凸n 邊形分成k 塊的方法。我們用代數方法證出 bn,k = dn+2−k ,k,也給了一個新的組合證明。
最後,透過對應的方法,我們找出了七個嶄新的組合結構,這些結構都是以Riordan 數來計數。
Partition the set {1,2,...,n} into several nonempty sets (blocks) and call it a partition. If there exists 1 ≦ a It is known that the nonsingleton noncrossing partitions are counted by Riordan numbers {rn}n≥0 =1,0,1,1,3,6,15,36,... In this paper we study the properties of them.
First we consider the enumeration of nonsingleton noncrossing partitions in respect to the blocks. We prove that the number of nonsingleton noncrossing partitions of {1,2,...,n} with k blocks is
Then we give a connection between nonsingleton noncrossing partitions and polygon dissections. Let dn,k be the ways to dissect an n –gon with noncrossing diagonals. We prove that bn,k = dn+2−k ,k
We also give a combinatorial proof. Furthermore, by way of the technic of bijection, we find 7 new combinatorial structures counted by Riordan numbers.
黑擬蛺蝶(Junonia iphita iphita)的幼蟲生存策略
黑擬蛺蝶(Junonia iphita iphita)為台灣地區常見的蛺蝶,其幼蟲具有築巢行為,但文獻中對其幼蟲行為的描述極少,因此本實驗探討黑擬蛺蝶幼蟲在野外的族群變化與環境之關係,並研究幼蟲築巢行為,以探討其適應環境的生存策略。首先於室內及恆溫生長箱中飼養幼蟲,以建立其生活史基本資料,並於野外統計各齡期幼蟲在不同植物上的數量變化及築巢行為的差異,以探討不同環境因素對幼蟲築巢之影響。由實驗結果得知,黑擬蛺蝶生活史短,可取食多種爵床科(Acanthaceae)之植物,其寄主植物除文獻所紀錄之台灣馬藍(Strobilanthes formosanus)及賽山藍(Blechum pyramudatum)等外,也取食大安水蓑衣(Hydrophila pogonocalyx)、無花水蓑衣(Hygrophila violacea)、易生木(Hemigraphis repanda)及翠蘆利(Ruellia brittoniana)等。黑擬蛺蝶幼蟲野外族群波動與溫溼度及雨量等環境因子並無直接關係。黑擬蛺蝶一年發生多世代且有世代重疊情形,世代波動與四季律動關係不明顯,顯示黑擬蛺蝶對環境的適應力大。黑擬蛺蝶幼蟲利用築巢以適應環境變化,應是其幼蟲良好的生存策略。且幼蟲在強風及光線強的環境下築巢率增加,降雨時則減少。Junonia iphita iphita belongs to Nymphalidae(Lepidoptera). They can be found easily in the wilderness of Taiwan. Its larva shows nest-making behavior. However, there is little literature documenting the behaviors of its larva. Therefore, the purpose of this research is to investigate the relationship between the quantities of Junonia iphita iphita’s larvae and its natural habitat, to research its nesting behaviors, and to investigate its survival strategies to adapt to the environment. I started by raising larvae in a growth chamber under a controlled temperature in order to obtain its initial information regarding its life history. In the field, I documented the numbers and the changes of larvae at each stage on different host plants and recorded the differences in its nest-making behavior in order to find out which environment factors influence the nest-making of Junonia iphita iphita’s larvae. These experiments concluded that the life history of larvae is short. The immature intaking habit showed that the larva takes various plants of the Acanthaceae. In addition to the host plants mentioned in the literature, such as Strobilanthes formosanus, and Blechum pyramidatum, Junonia iphita iphita’s larvae also live by Hydrophila pogonocalyx, Hygrophila violacea, Hemigraphis repanda, and Ruelba brittoniana, which were not listed in the literature. Through experiments, I discovered that there is no direct correlation between the population fluctuations of larvae and it’s enviroment including factors such as temperature, humidity or rainfall. Junonia iphita iphita can produce multi-generations in a year accompanying generation overlapping. There is also no obvious correlation between the generation fluctuations and changing seasons, showing that larvae can easily adapt to the environment. Junonia iphita iphita’s larvae adapt themselves to the different environments by nest-making which should be a good survival strategy. Besides, the rate of nest-making increases when larvae are under strong winds and strong lights and decreases when the rain falls.