長期服用安非他命對小鼠腦部紋狀體內蛋白質表
安非他命的濫用在台灣是非常嚴重的公眾健康及社會問題。安非他命會導致一連串的行為異常,包括在中腦紋狀體內釋放多巴胺及阻止多巴胺回收來增加使用者的活動力。由於安非他命會對腦細胞造成傷害,本研究的目的為探討低劑量、無立即毒性之安非他命(類似於人類使用習慣)長期施打下,是否會對C57BL6 小鼠大腦紋狀體內的蛋白質表現有影響。因此利用西方點墨法分析施打低劑量安非他命(2 到6 mg/kg) 約一星期之後,C57BL6 小鼠的大腦紋狀體中一些重要蛋白質(包括腺.酸受體A2A-R、第五亞型腺.酸環化.AC5、caspase-8 及PARP) 的表現是否有改變。實驗結果顯示,低劑量安非他命處理對這些蛋白質的表現並沒有明顯的差異。但利用二維電泳法可看到有少許蛋白質,在經過安非他命處理下有顯著的差別,如KIAA0193 homolog 、GOS-28、gammacrystallin A、malate dehydrogenase 和phosphoglycerate mutase isozyme B (PGAM-B)。這些蛋白質中,malate dehydrogenase 和PGAM-B 與代謝和產生ATP 有關,但前者是增加的,而後者減少,推測安非他命會影響神經細胞的能量代謝,因此長期施打安非他命對紋狀體造成的影響值得進一步探討。;The wide spreading use of amphetamine (AMPH) in Taiwan has become a serious public health and social problem. AMPH evokes a series of behavior abnormality including enhanced locomotor behavior by releasing dopamine and inhibiting dopamine-uptake in the striatum. Since AMPH is known to cause brain damage, the purpose of this study is to investigate the expression of several important proteins in the striatum of C57BL6 mice after chronic treatment with low and non-toxic dosages of AMPH (mimicking the common usage pattern of AMPH addict). C57BL6 mice were daily IP-injected with various dosages of AMPH (0 to 6 mg/kg) for one week. Expression levels of A2A adenosine receptor (A2A-R), adenylyl cyclase type V (AC5), caspase-8 and PARP in the striatum were analyzed by Western blotting analysis. Most proteins examined were not affected by this 1-week AMPH treatment. By the aid of two-dimensional gel electrophoresis, expressions of a few striatal proteins (such as KIAA0193 homolog, GOS-28, gammacrystallin A, malate dehydrogenase and phosphoglycerate mutase isozyme B (PGAM-B) in AMPH-treated mice were altered. Note that malate dehydrogenase and PGAM-B are two enzymes involved in energy metabolism and ATP generation. Interestingly, the former was increased and while the latter was decreased in AMPH-treated mice. Collectively AMPH may affect the energy metabolism in neuronal cells. These results suggest that the injury induced by long-term AMPH exposure warrants our further concerns and investigation.
金屬的盔甲
Our aim to attend this science fair is to design an instrument that can plat and measure the mass at the same time. In hope of designing a simple, accurate and convenient apparatus, we created an electronic circuit to display our original idea. In the process of constant improvements, we finally accomplished a “Super Mass Plating Gauge”, which can be easily and widely utilized in school teaching. The production of microbalance and the arrangement of electric circuit are the most significant parts in our research. The major components of the “Super Mass Plating Gauge” include a straw, metal clips and our creativity—the well-arranged electric circuit. The idea of microbalance originated from the Internet, but we advanced it by numerous experiments. First, we attached a steel cord to one side of the cathode in the electricity supplier. Next, we fixed the other side to the negative plate. And then, on the end of the negative plate, we tied a metal clip with the metal that will be plated. Eventually a new “plating gauge” was invented. By doing so, we could use this instrument to make our experiments. Our experimental goal is to research how different kinds of metal, time, electrode and voltage can affect the reduced mass on the cathode. We made use of such metal as copper, zinc and silver to carry out the experiments. In the end, by analyzing the results, we concluded a plating formula that can be applied to metal plating.
我們做此科展的目的,是要設計一個可以邊電鍍、邊測量質量的儀器,我們希望這個儀器是簡便、精確、且線路簡單,並且能推廣到教學的器材。經過我們不斷改良,終於完成了「便利質量電鍍器」 。 其中製作微量天秤和線路的配置方法,是本研究的重要部分。微量天秤的主要結構是吸管、鱷魚夾、及線路。微量天秤的構想,是參考以前的科展作品並加以改良,可精準測量到0.00010g,而裡面的線路,則是我們的創意(如圖一) 。只要把電源供應器的正極,接上左右任一鋼條,負極接到容器另一端,並加上一個鱷魚夾,夾上被鍍物,便是一個可邊電鍍,邊測量質量的儀器了!如此一來,我們就能以此儀器來作我們以下的實驗。 我們實驗目的在探討電鍍時不同金屬、不同時間、電極大小及電壓,對正極金屬片所減少質量的影響。 最後,我們推導出一個有關電鍍時正極金屬片質量變化量的實驗公式。為此,我們也要做許多次、許多種的實驗,來驗證我們的公式是否正確,並以我們所學的理論來推論。
費瑪也瘋狂-平面上存在障礙時連接三定點的最佳網絡問題
在一個有障礙的平面上,給三個定點,我們探討連接此三點的最佳網絡。我們討論了諸如直線、射線、線段、圓、網格狀、三角形……等類的障礙,當網絡每穿越障礙一次,就必須付出代價,例如「拖延5 分鐘」。所以,設網絡穿越障礙的次數為y ,則網絡除了原本的總長度之外,還額外加入y 倍某固定數值的損耗。我們以費瑪點的各種性質及三角形不等式等方法為工具,就不同的穿越障礙次數綜合比較,而找出最佳網絡。在某些情況下,最佳網絡不是以費瑪點來連接三點,而是在障礙(如:直線)上找出符合某種與餘弦值相關特殊性質的點,以該點來連接三點,而此網絡可用GSP 軟體相當精確地作出。另外,我們也探討在考慮障礙造成損耗的情況下,兩點間的「實際距離」為何。 最後,我們考慮「混合障礙」問題。在此類問題中,除了前面所討論的障礙,還另加了如同「河流」的兩平行直線間區域之障礙,在這種障礙區域中,網絡的長度要乘以數倍來計算。我們發現,此類問題的最佳網絡也可用特定的正弦條件配合GSP 而相當精確地作出來。;Considering various kinds of obstacles in a plane, such as a line, a segment, a ray, a circle, a triangle or chessboard grids, which function like a red light, we research into the problem of finding the optimal network connecting three given points A, B, C in the plane amidst obstacles described above. Each time when the network crosses an obstacle, it will cause losses, such as five minute’s delay or a loss of one hundred dollars. Taking advantage of Fermat points, some basic inequalities concerning triangles and some special qualities about sine or cosine functions, we obtain the optimal networks in different situations. Besides, we consider what the “real distance” between two points is when there are obstacles in a plane. We also put another obstacle, including a line and a weighted region between two parallel lines, into consideration. In the region, like a river or a muddy ground in real life, the length of the network should be multiplied by a fixed time. Furthermore, we can use GSP to make the networks very accurately.
毛細管內液體流速之探討及黏度測量方法之創新
有一次上實驗課時看到鄰桌的同學正以實驗室的毛細管吸吮一瓶\r 葡萄汁,每當他吞嚥時,毛細管內殘餘的葡萄汁竟然以近似等速的狀\r 態降回果汁瓶裡,這似乎違背了重力加速度的常理,是毛細管的影響\r 嗎?還是葡萄汁特有的現象?這與毛細管插入葡萄汁的深度有關嗎?\r 這一連串的問題皆因升學壓力而無暇深究。\r 升上高中的那年暑假,我參加了學校舉辦的資優科學營,在物理\r 實驗課中恰好遇到了以毛細管測量液體黏度的實驗,使我有機會深入\r 思索毛細管內液體流速的問題。這個實驗很不好做,要調整兩個定高\r 容器,使水平毛細管兩端產生固定的壓差,讓流經管內的液體為等速\r 的流動。大家手忙腳亂地操作了近三小時,測出來的黏度不僅和老師\r 公布的答案差距甚大,而且各組同學所測得之結果也大相逕庭,不過\r 我們都體驗到了液體黏度對流速的影響。\r 實驗的誤差為什麼那麼大?扣除人為操作誤差後儀器本身還有多\r 大改進空間?有否更精簡的方法測量黏度?毛細管中液體的流速真\r 是固定的嗎?把毛細管斜置或是垂直架置,流速還會固定嗎?重力不\r 會影響流速嗎?若流速真為固定的,如何控制或改變流速呢?是否可\r 以利用流速來測出液體黏度?\r 由於我對這個實驗的專注,在學校選修的專題課程中即以此為題\r 目做長期的研究,在老師的指導下,我和同組同學不停地查閱有關書\r 籍及整理資料,漸漸研究清楚原理後定出實驗計畫,並開始購買材料\r 與工具,長期地動手實驗及改進,兩年來我們利用毛細管中液體的等\r 速及不等速流動的特性,發展出了兩種既精簡又準確的液體黏度測量\r 法,以下就是整個研究及創作的過程。\r \r \r The viscosity is one of the most important parameters of the fluids. In conventional viscosity experiments, capillary-based viscometers are widely adopted because of their user-ready devices and moderate prices. However, to accurately measure the viscosity, the fluid velocity must be kept constant; otherwise, the fluctuation may cause the serious deviation. Besides, traditional capillary viscometers often require a long time to make the measurement. This research aims at exploring the capillary fluid mechanics and developing accurate and rapid methods to measure the viscosity. In this study, we developed two creative viscosity-measuring methods, the gravity sloping helical structure and the gradational liquid-level difference, and constructed two cost-effective capillary viscometer prototypes accordingly. The gravity sloping helical structure employs a long helical capillary as the flow channel and utilizes the gravity force to keep the fluid velocity extremely constant. The highlight of this method is that we can see the fluid flow through the capillary directly. On the other hand, the gradational liquid-level difference method uses the pressure sensors to precisely monitor the liquid-level difference, which drives the flow in the capillary, and allows automatic measurement of viscosity. Compared with computer simulation, the experimental results agreed well with the theoretical values. The gravity sloping helical and gradational liquid-level difference methods achieve 0.5% and 0.8% accuracy respectively. In addition, the automation of viscosity sensing also greatly facilitates the viscosity measurement. Furthermore, these two methods are both valuable for incorporating into educational purpose and industrial application.
鄒之風聲-風笛
「風笛」是台灣原住民鄒族的信號用具及祈雨法器,由一條繩子綁一支竹片構成。轉動風笛時,竹片會繞繩子自轉並拍打空氣而發出聲音,並有上下飛舞的現象。風笛產生聲音的原因,為竹片拍打空氣而造成的渦流共振現象;又由於繩子扭力大小及方向改變,使風笛的音調忽高忽低、響度忽大忽小、且竹片會在兩個平面上公轉,而有週期性變化。施力使風笛公轉轉速加快時,竹片自轉速率也變快,使其音調愈高、響度愈大;而繩愈短、愈粗時,竹片的公轉週期將愈短。The wind whistler was once used by Tsou aborigines as a tool for message transfer. It is composed of a string and a bamboo flapper. When swung around, the flapper spins, beats the air, and makes sounds. Moreover, the flapper flies up and down during the revolution. The spinning flapper beats the air, causes the vortex resonance phenomenon, and thus produces sound. As the twist torque and direction change, there is periodical variation in the sound volume, sound pitch, and the movement of the flapper, which orbits up and down at two planes. If given force to speed up its revolution, the flapper,s spinning frequency also increases, which makes the sound pitch higher and the sound volume greater. Besides, when the string is shorter or thicker, the flapper,s revolution period will be shorter.