Locus of the Points on Circumference of the n-th Circle that Formed by Moving the Center of any Radius Circles on the Outermost Circumference of Preceding set of Circles
This project aimed to study the motion which occurred from the end point on the circumference of the outermost circle by moving the center on the circumference of a preceding circle and the center of an innermost circle at origin. According to the study, when angular velocity was changed, it caused the different of loci. Based on the above information, finding the locus of the point on circumference of n-th circle that formed by moving the center of any radius circles on circumference of preceding set of circles was studied to get general equation. A set of circle and locus were created with GSP program. First, set the same radius circles on the X-axis with the first circle at origin, then found the relationship that occurred from the characteristics of locus. The result showed that if the ratios of angular velocity are 1:1:1, 2:2:2, 3:3:3, ..., …, n:n:n or 1:2:3, 2:4:6, 3:6:9, …,nw1:nw2:nw3, the characteristics of locus will be the same, while the others will be different. Finally, the equation of locus was found as follow: (x,y) = { ..........see in abstract...........} when .........see in abstract........... Where ri is the radius of i-th circle, zeta i is an angle between the radius of i-th circle and X-axis, wi is the angular velocity, t is elapsed time and alpha i is a starting angle between the radius of i-th circle and X-axis.
歐德斯-史特勞斯猜想之探討
歐德斯—史特勞斯猜想又稱為 4/n 問題,其內容為對於所有正整數n皆滿足 4/n=1/a+1/b+1/c ,其中a, b, c為正整數。於19世紀提出並在當代引起討論熱潮,至今此問題仍沒有完善的證明方法。經過查閱文獻資料後,我們發現他人研究重點著眼於如何將正整數n以同餘分類,且並未獲得一個系統性的研究結論。研究內容多執著於如何解決此猜想而非探討問題本身的規律性及各項性質。 此外,他人研究少有討論正整數n的解數者。因此本研究將方向設定在n, a, b, c的可行解數量。透過特例解切入n, a, b, c的表示方式,使問題簡化而較易於討論。以求對證明此猜想有所貢獻。
距離便是美—多維空間的支配數之討論
本研究保持社交距離為發想,探討從一維到多維空間的支配數。我們從使得三個同色單位方格不相連的二維情況,拓展至m個同色單位方格不相連的一維、二維、三維情況。本研究從The Domination Number of Grids這篇論文中汲取靈感,其中”Domination Number”也是「支配數」此名詞的由來。我們定義L_nt={(x_1,x_2,…,x_n)|x_1+x_2+⋯+x_n≡t (mod m),x_1∈[1,l_1 ],x_2∈[1,l_2 ],……,x_n∈[1,l_n ]},此處的l_n是邊長。對於一維情形的任意m,其支配數|A_1m |=⌊l_1/m⌋;對於二維情形且m=3時,我們經由列舉和畫圖證明其支配數|A_2 |=⌊(l_1 l_2)/3⌋。同樣的二維和三維情況在m=任意數時的支配數也可求得,不過在此我們改變了研究的方法,我們應用集合與同餘進行運算,除了減少窮舉將花費的時間,也可一次討論m=任意數的情況。