全國中小學科展

數學

Properties of possible counterexamples to the Seymour's Second Neighborhood Conjecture

The project is devoted to the study of the Seymour’s Second Neighborhood conjecture by determining the properties of possible counterexamples to it. This problem has remained unsolved for more than 30 years, although there is some progress in its solution. The vector of the research is aimed at the analysis of possible counterexamples to the conjecture with the subsequent finding of some of their characteristic values. In addition, attention is focused on the generalized Seymour’s conjecture for vertex-weighted graphs. Combinatorial research methods and graph theory methods were used in the project. The author determines the values ​​of densities and diameters of possible counterexamples, considers separately directed graphs of diameter 3. The conditions under which specific graphs cannot be counterexamples to the Seymour’s conjecture with the minimum number or vertices are defined. The relationship between the Seymour’s conjecture and vertex-weighted Seymour’s conjecture is explained. It is proved that if there exists at least one counterexample, then there exist counterexamples with an arbitrary diameter not less than 3. Under the same condition, the existence of counterexamples with a density both close to 0 and close to 1 is also proved. The equivalence of the above two conjectures is substantiated in detail. It can be concluded that if the Seymour’s Second Neighborhood Conjecture is true for a directed graph of diameter 3, then it is true for any digraph, so that problem will be solved. Moreover, if the conjecture is true, then vertex-weighted version of this conjecture is true too. That is why a digraph of diameter 3 needs further research.

3進位Kaprekar變換之結構

b進位的n位數字x,數字x各位數字由大到小排列為p,由小到大排列為q,定義Kaprekar變換T(b,n)(x)=p-q,例如T(10,3)(x)= 954-459。當T(b,n)(x)= x,稱x為Kaprekar常數。 Tk(b,n)( x)=T(b,n)( Tk-1(b,n)( x))= x, k >1時,稱x為k階Kaprekar循環數。本文解答了以下問題: 1. b進位的數字不包含數字b-1的Kaprekar常數的形式。 2. 3,4,5,6進位的Kaprekar常數的一般形式。 3. 對於2,3進位的情形,我們引入三元非負整數的形式來討論Kaprekar變換,轉換成Kaprekar數對(p,q),再進一步,由來探討比值p/q,將Kaprekar變換轉成Kaprekar函數g(x),解決 Kaprekar 循環數的所有形式及解。 最後我們得到Tl(b,n)( x)必是Kaprekar循環數。

Maximum Isosceles Sets

An isosceles set is a collection of points in which any subset of three points forms an isosceles triangle. We want to find the upper bound for the size of isosceles sets in any n-dimensional Euclidean space. Kido has already completed the study of isosceles sets in 3 and 4-dimensional space. We study the upper bound of spherical two-distance sets, a special type of isosceles sets, to help us find the upper bound of isosceles sets. More specifically, Musin’s Linear Programming technique on spherical two-distance sets could be used to study isosceles sets if a consistent relationship between isosceles sets and two-distance sets can be characterized. We offer a conjecture of this relationship. We also offer non-trivial lower bounds of isosceles sets in dimension 5 with 17 points and dimension 7 with 30 points as examples.

Properties of possible counterexamples to the Seymour's Second Neighborhood Conjecture

The project is devoted to the study of the Seymour’s Second Neighborhood conjecture by determining the properties of possible counterexamples to it. This problem has remained unsolved for more than 30 years, although there is some progress in its solution. The vector of the research is aimed at the analysis of possible counterexamples to the conjecture with the subsequent finding of some of their characteristic values. In addition, attention is focused on the generalized Seymour’s conjecture for vertex-weighted graphs. Combinatorial research methods and graph theory methods were used in the project. The author determines the values ​​of densities and diameters of possible counterexamples, considers separately directed graphs of diameter 3. The conditions under which specific graphs cannot be counterexamples to the Seymour’s conjecture with the minimum number or vertices are defined. The relationship between the Seymour’s conjecture and vertex-weighted Seymour’s conjecture is explained. It is proved that if there exists at least one counterexample, then there exist counterexamples with an arbitrary diameter not less than 3. Under the same condition, the existence of counterexamples with a density both close to 0 and close to 1 is also proved. The equivalence of the above two conjectures is substantiated in detail. It can be concluded that if the Seymour’s Second Neighborhood Conjecture is true for a directed graph of diameter 3, then it is true for any digraph, so that problem will be solved. Moreover, if the conjecture is true, then vertex-weighted version of this conjecture is true too. That is why a digraph of diameter 3 needs further research.

水流曲面與初始物理量值關係之研究

在理想狀態下,由一個圓形且開口面平行於地面的水龍頭開口中流出的水柱會呈現一以 z 軸對稱、切面積往 z 軸負向遞減的圓形疊合曲面。此曲面形狀受到下列三種物理量值影響: 一、水流在水龍頭開口瞬間速度(在此稱之為初速度) v0 二、水龍頭圓形開口半徑(在此稱為初半徑) r0 三、重力加速度 g 為了更清楚瞭解此曲面性質及在不同狀況下(三種物理量值改變情況下對曲面的影響),故提出下列問題在研究中探討: 一、這三種物理量值,對曲面形狀的影響為何? 二、這三種物理量值,對曲面曲率影響為何?

頂心三角形誕生的奇蹟

在第 屆科展作品(中華民國第 屆中小學科學展覽會換心手術)有給定了一個新的名詞(頂心三角形):平面上給定△ABC及一點D,分別以A、B、C三頂點為圓心,¯DA、¯DB、¯DC為半徑畫圓,三圓交於三點E、F、G,再以三交點E、F、G為頂點作△EFG,則新△EFG稱為△ABC在D點的頂心三角形,本篇作品主要探討原三角形與其頂心三角形邊長與面積比例關係,並試著利用這些關係求出頂心線以及其他相關性質。 在我們的作品中,我們求出頂心三角形的三邊長為2¯AD sin⁡∠ CAB、2¯BD sin⁡∠ ABC、2¯CD sin⁡∠ BCA,也就是說在原三角形為任意三角形,可以得出頂心三角形的邊長與原三角形之間的邊長關係,我們再進一步利用邊長關係求出頂心三角形對原三角形的面積以及面積比例。我們還發現,當D點在原三角形的外接圓上時,頂心三角形會退化為一直線,稱為頂心線,而此頂心線會通過原三角形的垂心是本篇作品最重要的發現。

多維度空間中隨機漫步回到原點之方法數探討

隨機漫步是數學、物理學、化學、經濟學上常需要涉及和探討的問題,其中探討回到原點的方法數和機率是常見的研究方向。本研究嘗試列出不同維度之間回到原點的方法數遞迴關係,發現不同維度移動相同次數時,回到原點方法數為特定的多項式。 參考了文獻Counting Abelian Squares後,本研究證明了特殊的對應關係,得到了多維空間中回到原點方法數的漸近式。儘管並沒有直接以其他較困難的數學探討方法計算,但依據本研究之結論,已可算出多維度下回到原點之方法數 至於在有限空間中回到原點的方法數,本研究僅完成二維平面下,超出邊界不同次數各種情況的討論,並經由程式檢驗公式的正確性。

Locus of the Points on Circumference of the n-th Circle that Formed by Moving the Center of any Radius Circles on the Outermost Circumference of Preceding set of Circles

This project aimed to study the motion which occurred from the end point on the circumference of the outermost circle by moving the center on the circumference of a preceding circle and the center of an innermost circle at origin. According to the study, when angular velocity was changed, it caused the different of loci. Based on the above information, finding the locus of the point on circumference of n-th circle that formed by moving the center of any radius circles on circumference of preceding set of circles was studied to get general equation. A set of circle and locus were created with GSP program. First, set the same radius circles on the X-axis with the first circle at origin, then found the relationship that occurred from the characteristics of locus. The result showed that if the ratios of angular velocity are 1:1:1, 2:2:2, 3:3:3, ..., …, n:n:n or 1:2:3, 2:4:6, 3:6:9, …,nw1:nw2:nw3, the characteristics of locus will be the same, while the others will be different. Finally, the equation of locus was found as follow: (x,y) = { ..........see in abstract...........} when .........see in abstract........... Where ri is the radius of i-th circle, zeta i is an angle between the radius of i-th circle and X-axis, wi is the angular velocity, t is elapsed time and alpha i is a starting angle between the radius of i-th circle and X-axis.

圓例覺醒

平面上,P點為△ABC內部任意一點,(AP) ⃡、(BP) ⃡、(CP) ⃡分別交△BPC、△CPA、△APB這三個三角形的外接圓於A'、B'、C'。若△ABC為銳角三角形,則¯(PA')/¯PA⋅¯(PB')/¯PB⋅¯(PC')/¯PC≥8,等號成立時若且唯若△ABC為正三角形,此外,並以三角形的三內角來表示P點為費馬點、外心、內心、垂心、重心時的確切比值;接下來推廣至n維空間,當P為任意n維n -單體A_1 A_2...A_(n+1)內任意一點,(A_1 P) ⃡、(A_2 P) ⃡、…、(A_(n+1) P) ⃡分別與n維n -單體P-A_2 A_3...A_(n+1)、P-A_1 A_3...A_(n+1)、…、P-A_1 A_2...A_n的外接n維球交於A_1'、A_2'、…、A_(n+1)',滿足∏_(k=1)^(n+1)▒¯(PA_k')/¯(PA_k )≥n^(n+1),等號成立時若且唯若¯(PA_k')/¯(PA_k )=n,k=1,2,...,n+1,其中n≥2。再藉由任意點的結論,可以應用於直接生成或快速解出許多特殊類型的三角函數不等式。此外,從主要的不等式還可以得到∑_(k=1)^(n+1)▒((A_k P)┴⃑)/(A_k A_k')┴⃑ =1,此時P點為n維空間中任意一點,最後,我們把圓改為圓錐曲線,再進行線段比值的探討。

婆羅摩笈多定理推廣至圓錐曲線內接多邊形中之探討

圓內接四邊形有一個幾何定理:若圓內接四邊形的兩對角線相互垂直,則連接對角線交點與一邊垂足點的連線過對邊的中點,稱為婆羅摩笈多定理。 我們嘗試將圓內接四邊形推廣至圓內接多邊形的情形,定義其多邊形中若滿足對邊建構原則:「連接兩垂直對角線交點與一邊垂足點的連線過對邊的中點,同時連接同一邊中點的連線垂直於對邊」,則稱此多邊形為婆羅摩笈多多邊形,簡稱B-多邊形。另外定義在圓內接多邊形中,兩相互不垂直的對角線交點若滿足對邊建構原則,則稱為特定多邊形。 本作品中,深入探討婆羅摩笈多定理推廣至圓錐曲線內接四邊形的情形,先推導出圓錐曲線內接正方形的建構條件,顯然此正方形必為B-正方形,此曲線包含七種。接著利用直徑性質推導出拋物線內接四邊形作圖,進而推導出圓錐曲線內接四邊形的二種建構條件,此曲線包含十一種。