全國中小學科展

物理與天文學

模擬黑洞潮汐破壞事件之演化和分析其逃逸比例與吸積率之探討

在超大質量黑洞周圍,偶爾能觀測到潮汐破壞事件的發生,而這也是一個能夠探測黑洞的手段。潮汐破壞事件是一種特殊的現象,當一個天體進入到所謂的「洛希極限」半徑範圍內時,因為受到的潮汐力超越了自身的重力而遭到撕裂。當這個事件發生時,會因為黑洞在吸積的過程中產生明顯的亮度變化,因此可以透過一系列的亮度變化觀測潮汐破壞事件,並可以推算黑洞的各項參數,因此潮汐破壞事件在天文學的發展上有其重要性。 因此,我們想要嘗試模擬潮汐破壞事件的演化過程。我們學習Linux語言以及如何使用Mcluster和PeTar等模擬軟體,並透過Python分析模擬結果,然後與理論預測值進行比較,以了解我們有那些地方需要修正。

Wetting Tracing Paper—Fiber Porous Media Curling Behavior and Mechanisms

This research presents a novel approach to understanding the curling and uncurling behavior of tracing paper when exposed to water, identifying limitations in traditional diffusion-based models like Fick’s second law. While Fick's model adequately represents the uncurling phase, where water content is stable, it falls short during the curling phase due to its inability to account for dynamic changes in diffusivity. Our study identifies capillary action, modeled through Richards' equation, as the primary mechanism in the curling phase, where diffusivity varies with water content due to capillary-driven water movement through the paper's porous structure. Experimental data align well with the Richards' equation model, highlighting a saturation point where curvature peaks, governed by evaporation's impact on moisture balance. To simulate this phenomenon, we developed a finite difference approximation scheme based on Richards' equation, discretizing the spatial domain for detailed control over moisture dynamics and incorporating the Robin boundary condition with virtual points. This approach, combined with evaporation considerations, produces simulation results consistent with observed data, emphasizing evaporation’s role in steady-state moisture gradients and the subsequent deformation mechanics. Our findings further reveal that factors like paper thickness, temperature, and salt concentration significantly influence curling behavior. We established linear correlations between peak time and thickness reciprocal, as well as between peak curvature and thickness squared, supporting theoretical models. Temperature affects both peak curvature and curling rate due to changes in viscosity and surface tension, and higher temperatures prevent full uncurling due to sustained evaporation effects. Increased salt concentration heightens peak curvature without altering expansion ratio, suggesting additional variables in play.