全國中小學科展

環境工程

嗜廢水者為「菌」解-高氨氮廢水於微生物電池的應用,及其裝置之探討

目前所發展之微生物燃料電池,不僅成本極高,多數皆直接使用河水、汙水中之微生物,多為雜菌,且所分解者多為一般河川、家庭廢水。而生活中,高氨氮廢水的處理成本較高,一般微生物亦較不易於高氨氮環境中生存。本實驗先篩選出可在高氨氮環境中生存之專一性菌種,以高氨氮生活廢水為分解對象,應用於微生物燃料電池,找出發電效果最佳之菌株,既可分解廢水又可發電,兼具環保與經濟價值。 本研究先以高氨氮培養基仿效高氨氮生活廢水,篩出合適菌種並作用於電池裝置,探討菌種、菌量、陰陽極面積大小、兩極間距、養分多寡/種類、環境明暗等變因之影響,最後以高氨氮廢水取代培養基進行實驗。微生物電池由第一代、第二代,終發展出材料取得容易、成本低、內電阻低、電壓穩定、可間歇式放電之第三代微生物電池,實用價值極高。

利用I.M.S.即時顯示系統建立資料庫,在重金屬污染監測上之應用

本研究以設計即時監測系統(Instant Monitoring System 簡稱 I.M.S.) 為目標,利用電解質導電原理,設計LED顯示系統,即時顯示土壤與河川受到重金屬污染。 電解質水溶液,在通電發生電泳運動時,不同的離子的水溶液電阻,會呈現出振盪的特殊性,可作為離子種類的判斷條件。藉由約105筆實驗數據,作七種重金屬離子的定性比對, 可以快速的比對出不同重金屬離子的濃度與種類。本實驗的設計與使用有以下的優點 : 一、 無論樣品電阻大小均可使用。二、 利用簡易工具,可輕易檢測出廢水內離子濃度的範圍與種類。三、 可作為檢測電泳與導電性質的輔助工具。四、 操作簡便,可廣泛使用。

Reuse Waste and Save the World by Production Fiber Reinforced 'CB' made from Empty Fruit Bunch (EFB)

At present Malaysia is the largest exporter of palm oil in the international market. In the process of extraction of palm oil from oil palm fruit, biomass materials such as palm empty fruit bunch (EFB) and palm pressed fibre (PPF) are generated as waste products. Natural fibres reinforced cement-based materials have gain increasing application in residential housing components. One of the natural fibres considered is oil palm empty fruit bunches (EFB) fibres which offer advantages such as availability, renewability, low cost and the established technology to extract the fibres. This study investigates the properties of cement board incorporated with large amount of oil palm EFB fibres Among the tests conducted was compressive strength, density, water absorption and thickness swelling tests. It was found that high EFB fibres content lead to lower strength and higher absorption . The results also indicate that high EFB fibres contents reduced the self-weight of the blocks and the resulting blocks can be classified as lightweight cement blocks suitable to be used as lightweight walling materials. Our research is to study the production of cement board using Empty fruit bunch(EFB)These board were made from empty fruit bunch, cement and water. Two chemical are added is aluminium sulphate and sodium silicate. Cement : EFB mixture by weight was 2.5:1, 2.75:1 and 3.0:1 used to produces a cement board.

以自組儀器探討單寧酸與鐵及鉛離子之作用並開發為檢測方法之研究

為檢驗地下水的微量金屬,本研究組裝可同時測定透光度及散射光的LED光電儀,微觀金屬離子與單寧酸作用,找出單寧酸適用濃度及金屬可偵測濃度範圍。研究結果顯示,單寧酸對鐵及亞鐵離子皆會產生黑色錯合物,與鉛離子則產生沉澱及顏色變化。利用儀器的高靈敏度,利用10-4M的單寧酸測量鐵離子與鉛離子產生的變化,經透射電壓值分析後,可成功量到10-6M(5.6×10-2 mg/L)鐵離子,檢量線的關係為[Fe3+]=(0.4510-logVt)/6704.9 ,而鉛離子則為10-5M(2 mg/L),檢量線的關係為[Pb2+]=(0.2485-logVt)/657.4 。有別於一般的金屬檢驗方法,以單寧酸檢測法為創新且具穩定效果,成本低無污染,可應用在高中的實驗室。

Hay Aliens

The purpose of my project was to prove if the seeds of invasive plants are spread throughout the Peace region in hay harvested by local farmers. Invasive plants are so dangerous because they adapt to their environment fast and some of them can cause harm to both animals and humans. Within a year they can completely wipe the ecosystem out of native plants. Many invasive plants are either poisonous or can affect the systems of the animals body’s. I collected 22 hay samples from local farms around the North Peace region. I conducted a survey to help collect information about the samples. A pretest was conducted to determine which of two homemade sifters (one with three layers of decreasing size wire mesh, and one with 6 layers of materials with larger size holes) was the best for sifting through hay. I was able to determine that the larger sifter was easier for sifting hay. I sifted through all 22 samples with the larger sifter. I individually looked through each layer and removed what I believed to be seeds. Each seed was individually bagged, labeled, and photographed through a microscope. After each seed was photographed they were planted to help identify the seeds. I contacted a seed specialist. I was able to send him the images of my seeds. He helped me to identify my findings. I removed a total of 5568 potential seeds in my 22 samples. Out of all the potential seeds found 628 seeds were invasive. All invasive plants identified either cause pain to animals or they easily over take the native plants.

Antimicrobial and Heavy Metal Sequestration Capacities of Graphene Polymer Nanofilms

Membrane bioreactors (MBR) are important components in the production of effluent in wastewater treatment systems. However, MBR are susceptible to biofouling, a process by which bacteria colonize the surface of the membrane in contact with water. Graphene could be a solution to biofilm formation. In this study, the graphene polymer nanocomposite’s antimicrobial and heavy metal removal properties and the mechanisms behind the properties were investigated. Five different films of nanocomposites with a form of graphene and a polymer were synthesized: Graphene, Graphene Oxide, PVK-GO, PVK-G, PVK. A Büchner funnel and a vacuum pump were used to coat membrane filters with solutions of each nanomaterial. Using the Büchner funnel, E. coli and B. subtilis bacteria were filtered through the filter and both the filtrate and the filter were examined for bacterial content. Similarly, a Pb2+ solution was filtered through the coated filters and percentage removal of the ion was calculated using Atomic Absorbtion Spectrometry. Further analysis from SEM data, ATR-IR, and an Oxidative Stress test revealed that the PVK-GO nanocomposite inactivates bacteria by causing oxidative stress and the carboxyl group binds to lead ions. PVK-GO was most effective at removing the highest percentage of heavy metal and inactivated the most bacteria and displayed the most antimicrobial properties. PVK-GO coatings provide an efficient and economical alternative to the current wastewater industry standard and can save millions of dollars and reduce environmental waste. Also, the coatings have applications in indwelling medical devices and can reduce the risks associated with biofilm formational and bacterial infections.

VERMICOMPOSTING-EFFICIENT DAIRY SLUDGE MANAGEMENT

The continued growth of dairy farming in NZ and the move toward keeping cows on stand-off pads has seen a major increase in two significant waste streams, the wood fibre that is scrapped off the surface of the standing pads and the effluent that is now concentrated at the site of these pads. In combination these waste streams offer the farmer an opportunity to recycle valuable nutrients back into the soil as an up-valued soil conditioner. This investigation explores vermicomposting as a tool to efficiently manage these two significant waste streams. Sludge was removed from a settling pond and mixed with a range of carbon products that are recommended by Dairy NZ for use in stand-off pads: wood chips, post peeling, sawdust and also wood shavings (used in calf sheds). The wood fibre/sludge mixtures were assessed on their acceptability to tiger worms (Eisenia fetida) by measuring the pH of the mixture and seeing if they corresponded with the preferred pH for tiger worms. The vertical spatial distribution of tiger worms was measured over a period of 15 days and the rate at which the worms moved into the different mixtures was assessed. The worm mass before and after this 15 day period was also measured to ascertain the mixtures’ ability to support worm growth. Finally, different ratios of sludge and post peelings removed from a calf shed were used in a choice chamber experiment to establish the worms’ preference. Tiger worms were used throughout the investigation as they represent the worm species most widely used in vermicomposting in New Zealand. Tiger worms feed on decomposing organic matter, bacteria and fungi in the upper organic horizon of soil. All of the unused wood fibre and dairy sludge tested lay within the acceptable pH range for tiger worms. Wood fibre exposed to large amounts of urine ie calf shed post peelings, that lie outside the acceptable range can be favourably adjusted with the addition of dairy sludge. All the particle sizes of the wood fibre tested were found to be acceptable to tiger worms and capable of supporting increase in their body mass beyond that of the compost. Due to the observation that the worms did not integrate themselves as fully in sawdust as the other fibres tested it is recommended that further investigation should be carried out before sawdust is used for vermicomposting. While a comparison of the average worm density in each mixture may indicate a preference for post peelings this cannot be statistically proven and more trials are recommended. The preferred ratio within the limits that were tested is 1:3 calf shed post peelings to sludge (41% dry weight). Vermicomposting can therefore be recommended as a possible onsite technology to process the twin waste streams of wood fibre and effluent generated by dairy farms. The next step would be to implement medium scale field trials with a continuous windrow system, testing resulting compost for its nutrient content and then comparing this output to that of current practises

Auto-control water consumption System

By saving water you are saving lives including yours. All of us know that water is an invaluable and priceless gift. We can’t dispense it. The consumption of water differentiate from one country to another, we may use over quantities of water, in other countries people are thirsty living under the limits of poverty .It’s very important for agriculture, industry even human animals and plants can’t live without water. But people are careless, they consume a huge quantities of water in shower, washing car, gardening…. So that we thought to make this brilliant project F.W.S (frugal water system). This system is connected with you mobile phone by an application that shows you your water consuming and makes you control it. It record in every minute your consumption. This control system helps us to preserve water for the future generation. Besides, it tells you the price that you will pay and warns you if you pass the quantity of water that you should consume in a defined period. So you can also save your water bill. So we have to make this project works to let every person know that he is doing squandering water. With this system we can save planet resources of water. Finally, the water is as precious as our lives and with frugal water system, we will be able to monitor and control our water consumption. Also be alerted in the event of a leak or flooding. This project helps us to preserve water, reduce and avoid over-consumption. So we have to stand together against water squandering by making this project works.

自製高效率簡易水解發酵裝置將纖維素轉化為生質酒精之新製程

本研究以不同水解纖維素的方法,包括傳統酸水解、微波及臭氧法,完成效果比較,並以各方法最優勢理論組成最快速且產醣量最高的水解程序。再以麴菌發酵將醣轉為生質酒精,以止逆閥自製簡易即時取樣發酵裝置並研究效率最佳的麴菌酒精發酵,其中速發酵母平均一天酒精生成率高達約90.5%。 藉由基礎水解及發酵研究成功設計一套「低耗能、低成本、低汙染、高效率」自製可攜式簡易水解發酵膠囊進行纖維素水解,轉化為醣後又可在同一膠囊中加入麴菌進行酒精發酵,效果極佳,提升轉換率達63.8%。本研究進一步透過此自製膠囊推廣到廢棄稻草桿、甘蔗渣、甘蔗皮等,皆可得到極佳效果。

Application of molecular templates on magnetic particles for adsorption and desorption of heavy metals

This study investigated the production of novel molecular templates, and analyze their adsorption effect on four heavy metal ions (Cu+2, Pb+2, Zn+2, Mn+2), which commonly exist in Taiwan's rivers. Different operating conditions (such as competitive adsorption, pH value and other factors) were explored to compare their adsorption effect of heavy metal ions by using the synthesized template molecules. The molecular templates were found to be specific towards their target metal ions with a high adsorption effect. Then combined with the idea of magnetic particles to produce magnetic molecule templates, a maximum amount of adsorption of heavy metal ions up to 95% through the molecular template was achieved while the effect of heavy metals desorption of up to 83% could be also successfully obtained. Experimental results showed that the magnetic molecule templates did not affect the adsorption of heavy metal ions. Not only can they speed up the recovery time of adsorption but the template molecules can also be collected more efficiently. We also proposed three different applications for the developed molecular templates. The development of magnetic molecular template may provide an affordable, highly-efficient way for dealing with heavy metal pollutions.