摺紙數列-相關問題探討
1. 遊戲規則:將1~ 2m × 2n的連續正整數,由上而下、由左而右依序填入 2m × 2n的方格內。操作規則允許將2m × 2n做往右或往左或往上或往下的完全對摺,直到操作至所有單位方格均疊成一行,此同時有數字也由上而下形成一數列。2. 本研究即是探討操作完成的數列之數量與數字間的關連性。3. 我們發現:(1) 數列之數量與巴斯卡三角形有關。(2) 形成的數列必符合內文的 [ R(L) 性質]、 [ D(U) 性質]、[ R&D 性質]、[D&R 性質]。
1. Rules of thegame: Fill in order the continuous positive integers 1~ 2m × 2n, from top to bottom and from left to right in the 2m × 2n check. The operational rule allows a complete fold of 2m × 2n either rightward or leftward, or upward or downward, until all the check units pile up in a line. At the same time, all the integers form a series from top to bottom. 2. This study explores the relationship between the number of the series and the integers after the operation. 3. Our findings are: (1) The number of the series is related to Pascal triangles. (2) The series formed meet the properties mentioned in the study: [the property of R(L)], [the property of D(U)], [the property of R & D], and [the property of D & R].
本土藥材金銀花的研究與分析
本實驗以薄膜色層層析(TLC)、高效能液相層析(HPLC)分析等化學方法,進行金銀花品種差異的鑑識;此外,配合生藥學的顯微鏡檢視,如中藥材組織鏡檢、藥材粉末鏡檢等比對,以期找出辨別金銀花品種的方法。研究至目前為止,由金銀花之薄膜色層分析的Rf值(0.225、0.425、0.7、0.85、0.95)可確認出金銀花藥材,並得知金銀花藥材中皆含有綠原酸的成分;以高效能液相層析的圖譜與成分峰的積分面積可用來判別金銀花的品種,並從質譜分析瞭解成分含量;進行生藥學的藥材粉末組織鏡檢,發現無法作為金銀花藥材的分類憑藉。未來將持續延伸實驗,朝向中藥奈米化與一般粉末在藥效、成分上差異的比較,並進行金銀花萃取液的抗菌作用試驗,瞭解不同品種之金銀花藥材在藥理作用的異同,接續著奈米化藥材的應用與實踐。Using thin layer chromatograph (TLC) and high performance liquid chromatography (HPLC), we can study how to differentiate the species variation of honeysuckle; beside, based on the observation of biopharmaceutical microscope, such as comparing the histology of Chinese herbs and its powder, we suggest that we could differentiate the species of honeysuckle. From the present, firstly, we could distinguish the honeysuckle from other herbs by the Rf value of TLC(0.225, 0.425, 0.7, 0.85, 0.95), from which we find that all honeysuckles contain the component of Chlorogenic acid. Secondly, we could tell the species of honeysuckle according to the map of HPLC and the peak area after integration, as well as the integrants of honeysuckle by way of LC-Mass analysis. Thirdly, while studying the histological analysis based on the observation of biopharmaceutical microscope, we found that it shows no difference between all the honeysuckles; thus, it fails to be a scientific method used to distinguish the herb honeysuckle. However, in the biochemical experiments of honeysuckles, we found honeysuckles from different sources and the place of origin shows difference in their antibiotic effect, showing the importance of local medicine. When it comes to my future work, in order to extend my experiments on honeysuckles, I would compare the nano-scale honeysuckle powder with normal-sized one in their clinical effects and components.
Vitamin C in Cold and Flu Drinks
This chemistry project was designed to measure the vitamin C levels within liquid cold and flu remedies, and see if they had been accurately stated on the package. A range of Cold and flu drinks was selected, including one made with only cold water (Lemsip Original, Lemsip Max, Effer-C-Cold Water, Relief and Lemting) .The procedure used to carry out the experiment was a redox titration, each trial required two titrations, with the first being a blank titration to determine a sodium thiosulfate concentration in the absence of vitamin C. The following Drinks had more Vitamin C than stated on the packaging – Lemsip Original (19.4%), Lemsip Max (22.1%), Effer-C (17%) and Relief (8.8%). Lemting was the only drink made to directions that had less Vitamin C than stated by 31.8%. Two conclusions can be drawn from these results, the first being that Lemting has the most inaccurately recorded mass of vitamin C and is also the only drink with less vitamin C than stated. The other interesting result is that Effer-C (the only drink made with cold water) had 170mg of extra vitamin C. Of the other drinks that had more vitamin C, Lemsip Max was next with an extra 22.8mg. Early research had showed that Vitamin C was affected by high temperatures (above approximately 70oC) and, as cold and flu drinks are commonly made with hot water the Vitamin C levels might change when they were made up. This poses a further possible research question which is, in making cold and flu remedies with hot water is some of the available Vitamin C being destroyed?
Dioscorin 對塵?造成氣管上皮細胞傷害的保護性之研究
古籍上記載山藥益肺氣,養肺陰,且最近研究報告發現山藥含有珍貴的dioscorin,其為山藥貯存養分的重要蛋白質,有抑制胰蛋白水解?之活性。而塵?糞便、屍體中的消化蛋白?會破壞呼吸道上皮細胞緊密連接處引起過敏氣喘反應。我對此甚感興趣,進而利用山藥的萃取蛋白dioscorin、塵?粗萃取蛋白及呼吸道上皮癌細胞A549,藉細胞培養、免疫螢光染色、螢光顯微攝影來實驗山藥是否真能保護上皮細胞緊密連接處。再利用膠體電泳、西方墨點法中抗體的高專一性、二抗的高靈敏度來確知我之前的實驗。另外也用ELISA 來實驗dioscorin或塵?引起A549 發炎的情況是如何。由實驗得知,dioscorin 可抑制及預防塵?引起的過敏氣喘反應;而經由ELISA 實驗發現,dioscorin 對於塵?刺激A549分泌發炎物質Eotaxin 並沒有助長或是降低的效果。It was believed that Chinese yam have benefits in treating asthma. Recently, it was found that the valuable dioscorin can be isolated from Chinese yam. The major function of dioscorin is nutrition-storage, however, it also have activities in inhibiting trypsin-like protease. This inhibitory activities trigger my interests. Because the major allergens, mites, and their stool may destroy the tight junctions of airway epithelium cells through their trypsin-protease activities. I therefore carry out an in vitro study to identify whether dioscorin can be used in protecting epithelium from the attack of mites. My results showed that dioscorin can protect the tight junctions of A549 cells from the attack of mite crude extract protein. I believed that dioscorin can be a good candidate in pharmacology application. The genetic and proteomic information are my further focus. On the other hand, we also investigated the possible activity of dioscorin in inhibiting mites-induced inflammation through using A549 as a model and employing ELISA. We found dioscorin neither inhibited nor enhanced the eotaxin being secreted from A549 under the stimulation of mites.
外觀數列
The Look and Say sequence is produced by describing the appearance of the previous row. For example, start with “1,” which can be described as “one 1,” and therefore the second row is “11,” which is "two 1s," making the third row “21,” the fourth row “1211,”and so on. The main goal of this study is to work out the exact formula for this sequence, which means given the row number n, we can know at once what the n-th row is without having to start from the first row and doing the look-and-say iteration for n-1 times. Some of the methods used include dividing groups, repetition and cracks. The formula we derived speeds up the calculation and gives us a better understanding of the look and say sequence.「外觀數列」為依照外觀產生下一列的數列,第一列為「1」,第二列描述第一列「1 個1」而為「11」,第三列則描述第二列「2 個1」而為「21」,第四列「1211」,依此類推。本研究針對外觀數列的各項數學性質作研究探討,並由此推導出外觀數列的一般式,即給定第n 列就可知道該列的內容。我們運用了分組、重複性以及裂縫的方法分析數列,最後得到了其一般式,此一般式有助於運算速度的加快以及我們對數列性質的了解。
氣泡在黏滯性液體中的運動
本研究目的在探索不同大小之氣泡在不同黏滯性液體中運動情形。實驗結果發現大氣泡向上運動的速度較大,其下方會漸漸向內凹。並且觀察到氣泡間結合時的相互作用:氣泡在相同黏滯性膠水中上升時,若下方氣泡體積較大,其較快的速率會使距離縮短。此時小氣泡的下半向內凹,大氣泡的下半則向外呈現流線型尖端並且在接近小氣泡時速率增加,最後與小氣泡結合。若上方氣泡體積很小,與下方大氣泡的距離縮短至相互貼合,小氣泡會先停留在大氣泡的上半表面,再沿大氣泡表面下滑至大氣泡的下半才與大氣泡結合。This research traces the motions of bubble with different volume in viscid liquid. The experimental results show that the bigger bubble rises at faster speed. The shape of the small bubble is round. As the volume of the bubble increases, it turns hamburger-like. And if the bubble is big enough, its underside would be concaved. In viscid liquid, the speed of the bubble is not smooth but waved. The smaller the bubble is, the more the variation in speed is. The interaction of two bubbles is also studied. There are two types of the combination of two bubbles. While the big one closes to the small one, it is accelerated. The underside of the small one becomes concave. And the big one becomes streamline shape. If the difference in volume between two bubbles is significant, the small one slides along the surface of the big one, and goes into the concave beneath it, then combines with it.
由Brocard Point 發現幾何不等式
本研究報告以Brocard Point 為核心,所用到的性質均先證明,以確認其正確性,並推演出一些其他的性質,藉由這些性質導出幾何不等式。內容可概分為四部份:(1)以Brocard Angle 及已知的或推演出的基本性質,導出一些不等式。(2)結合「法格乃諾問題」、「費馬點」、「尤拉公式」導出幾個幾何不等式。尤其是三角形邊長與面積,外接、內切圓半徑與邊長間的不等關係,頗為有趣。(3)以向量為工具,分別計算內、重、垂心與Brocard Point 間的距離,並導出邊長的不等關係。其中由內心及重心所導出的不等式,清楚俐落;垂心所導出的不等式則較為複雜。(4)以Brocard Cirle 與內、重心間的關係,導出一系列的不等式。其中Weitgenberk 不等式的無意發現,令我們印象深刻。The Discovery of Geometry Inequalities by Brocard Point This paper takes Brocard Point as a core. We proved some properties about Brocard geometry to confirm its accuracy, and deduce some other properties, and then derive some geometry inequalities by these properties. The content may divide into four parts: a) Derives geometry inequality by Brocard Angle, Crux Mathematicorum and properties which known or deduced. b) Unifies "Fagnano problem", "Fermat Point", "Euler formula" to derive several geometry inequalities. In particular the inequalities between triangle area and length of side, or circumradius inradius and the length of side, is quite interesting. c) Derives geometry inequalities about length of sides in triangle by the distances between incenter centroid circumcenter and Brocard Point. Especially, these inequalities were elegant which derived by incenter and centroid, but it was complicated derived by orthocenter. d) According to the relation about incenter centroid and Brocard Circle derives a series of inequalities. Discover Weitgenberk inequality makes us excited.
抑制水果黑色素形成之新理論及研發美白保養品之新概念
PPO 是一種含銅的多酚氧化? (E. C. 1. 14. 18. 1),主要是將酚類 (phenol) 氧化成二酚類(diphenol),更近一步的變成quinones,後者是一種不溶於水的褐色聚合物,在植物中造成褐化最主要原因,然而在人類皮膚則產生黑色素 (melanin)。我們提出有一種揮發性的抑制劑存在動植物體內,此種抑制劑會抑制生物體內PPO 的活性。植物在收成後,揮發性的抑制劑逐漸消失,導致內生性的PPO 活性逐漸上升,因此植物便會產生深褐色的斑點。在本研究中,我們以玉蘭花作為例子,以生化酵素動力實驗、部分純化黑色素抑制劑來解釋揮發性抑制劑在植物體內的存在及其作用,更進一步對水果快速褐化提出一種新的理論。研究發現PPO 的褐化反應就像是人體內酪氨酸? (tyrosinase) 的催化反應,酪氨酸?可以使人體產生黑色素而累積在皮膚上形成黑斑,利用〝人工皮膚〞模擬揮發性黑色素抑制物的作用,證明,防止PPO 抑制劑之揮發可能在未來美白保養品工業裡扮演一極具潛力的角色。Polyphenol oxidase (PPO) or tyrosinase (E.C. 1.14.18.1) is an important and ubiquitous enzyme responsible for browning in plants and melanization in animals. PPO is a copper-containing enzyme that catalyzes the chain-oxidation from monophenol or polyphenols to o-diphenols and subsequent o-quinones. The resulting quinones are large wate-insoluble polymers with dark brown color. We proposed that volatile inhibitors are associated with the plant PPO and block the PPO activity in vivo. While post-harvesting the volatile inhibitors evaporate, the endogenous PPO is then activated and therefore instantly produces dark quinone pigment. In the present study using magnolia flowers as an example, we show the presence of a potent volatile inhibitor(s) for PPO in plant. The novel finding clarifies the mechanism involved in the browning phenomenon of post-harvesting for most fruits. Since the PPO is also know present in human as tyrosinase responsible for the formation of “darkening spots” on skin, the finding of evaporation of potent PPO inhibitor may be potentially used as a strategy in developing a novel cosmetic product.