全國中小學科展

2004年

Body Sway Technology:Studies on Data Correlations to Identify Elderly People Prone to Falling

It is extremely costly to care for elderly people who have suffered a serious fall. Thus, doctors welcome a device or method to identify people prone to falling, to reduce elderly health costs and enable those identified as “fallers” to take precautions. Recently, a Sound Wave Assessment (SWA) device was developed to determine if tested human subjects were prone to falling. It is based on the concept that all humans exhibit postural sway while standing stationarily. The device employs two sonar transducers, which emit and receive ultrasonic pulse signals. The first transducer is positioned on a tripod, while the second is attached to the lower back of the human subject. Each transducer emits ultrasonic modulation pulses, which are detected by the other transducer. The distance between the two transducers is calculated from the time taken for the pulses to travel from the sender to the receiver. Hence, we can measure the small displacement fluctuations of the standing human subject, both approaching and receding from a static transducer, as a function of time.

台灣地區冷泉成因的實驗室模擬

本實驗是以實際探勘的地質及泉水資料和文獻為基礎,對於幾個可能造成冷泉降溫的原因(岩石種類、泉水pH值、流通氣體之壓力、流速)進行實驗。我們製作了一個模擬地下泉水流動的實驗管路,此管路並可同時觀察紀錄氣壓、氣體流速,以及實驗前後模擬管路的溫度變化。透過對實驗管路的熱容量校正,我們可以找出各變因對泉水降溫的關係,以建立出一個模型,期望可套用於實際冷泉的狀況,進而推論出更多冷泉的性質。This experiment uses data and bibliography from real exploration as bases to find the possibilities of why the cool spring drops in temperature. (Mineral types, spring water's pH value, air flow pressure, and movement flow.) We created a model of underground spring water for the simulation. From this model, we could observe the air pressure, movement, and the spring's change of temperature before and after the tests. By adjusting the thermal capacity in the model, we could find the direct cause of the spring's temperature drop. And hopefully be able to adopt this model to the realistic problem, increase the effort of analyzing the natural cool spring's properties.

Waits and Measures

Successful calving is measured by the safe delivery of a healthy calf. Any factors that\r cause dystocia (difficult calving) are undesirable; as it will result in weak or dead calves, stress\r dams and a decrease in profit to the rancher. The most often identified reason for dystocia are\r calves that are too large at birth. Ranchers frequently use sires that will result in calves with\r small birth weights that will be born easy. This is especially true when breeding first calving\r heifers. The selection for small calves at birth results not only in less growth in the uterus but\r also less growth after birth, which means less beef to sell. This means ranchers try to balance\r reasonable growth and reasonable calf size when selecting their sires. Much data has been\r published on birth weight and its selection.

什麼尚「氫」--談燃料電池之放氫探討

氫是一種非常理想的能源。不僅效率極高,且不會造成環境污染。空氣中的含量極少,常用的電解水方式又效果不彰。我們利用Ag、Ru、Cu 、C-CuPu、C 等數種電極,與H2SO4、 H3PO4 、HNO3 電解液,分別在10V 雙電極與-0.8V 三電極下做電解水實驗,研究何種電極與何種電解液能得到最多的氫氣量。在低電壓下找出最好的電極,液與太陽能電池結合,成為電池中的一部份,讓發電效果更好,以利未來燃料電池H is a kind of great power.It is not only effective,but also no environment pollution .Owing to the H in the air is very little,so it is not easy to take .Addition to,we often to take it by electro liquid,but the electrolysis effect is not ideal. Except Ag、Ru、Cu、C-CuPt、C and so on ,in theH2SO4、 H3PO4 、HNO3 electro liquid,we have a experiment in the 10V dual electrode and -0.8V triple electrode to study which electrode and which electro liquid to get the most of H.Under the low voltage,we can fund the best electrode.It is easy to bind with solar energy battery,andit can be a part of battery.Besides, it makes the generator effect better,and it is convenient to make the fuel cell commercialize in the future.

BP 人工神經網路應用於求解直線方程式

Now Artificial Neural Networks using on the basic math is fewer. This paper is to suggest the Linear equation of the basic math using the BP Artificial Neural Networks. The BP Neural Networks have power ability for learning and can approximate any function, and regularity can be found to solve the linear equation. A good sample is one of the important elements for learning of Artificial Neural Networks. Generally, the samples are a lot of amount for the resolution of Linear equation. This paper is to use the principle of two points decide one line for the samples. The experiment shows that this method curtails many samples. Furthermore we also use Artificial Neural Networks to solve the problem of point-slope form. The experiment result is very satisfactory, and it offers some idea for the basic math using Artificial Neural Networks.目前人工神經網路較少用於基礎數學方面的求解,本文針對基礎數學直線方程式提出BP 人工神經網路應用於求解直線方程式,運用其很強的學習能力、(輸入向量和其對應的目標向量來訓練網路、逼近函數),尋求規律來求解直線方程式;而良好的樣本是人工神經網路學習的重要條件之一,一般解決直線方程式需要大量樣本,本文利用二點決定一直線的原理來解決樣本問題,實驗結果顯示,這一方法成功的縮短了可觀的學習樣本,此外我們也運用BP 人工神經網路來求解點斜式的直線方程式問題,實驗結果是可行的,並且為人工神經網路用於基礎數學提供了一些思考方向。

讓視域更遼闊--在有限的螢幕空間上顯示更多的圖形式資訊

在利用電腦螢幕來瀏覽圖形式資訊的時候,常常受限於螢幕的空間,沒有辦法在顯示\r 資訊整體結構的同時顯現細節部分的資料,目前的使用者介面所採用的方法有放大(zoom\r in)、捲動(scrolling)、開啟多個視窗(multiple view)等方法,這些方法雖然可以呈現出資\r 料的細節部分,但是仍有其個別的缺點存在,放大的方式會有遮蔽的情形;捲動的方式無\r 法同時地呈現整體結構;開啟多個視窗的方法使得使用者的眼睛必須在這些視窗間來回的\r 移動,造成麻煩。\r 魚眼鏡頭是一種短焦距、大視角的相機鏡頭,鏡頭成像的時候,越接近鏡頭中心的物\r 體會越放大而越遠的部分會越縮小,藉著發掘魚眼鏡頭的成像函數,我們發展出了一種新\r 的使用者介面,在瀏覽圖形式資訊的時候,能夠顯示整體的結構,並隨著滑鼠游標的移動,\r 以不開啟新視窗及無遮蔽的方式,即時地將想要觀察的部分局部放大以展現細部的資料,\r 這種使用者介面將具備現有方法的優點而無其缺點。\r Browsing the global structure of a large graph in limited screen space has the drawback that details\r are often too small to be seen. The most common solution provides a scrollable view. This shows full\r details at the region currently visible through the view, but hides the rest of the global structure.\r Alternatively, zooming into a part of the graph does show local details but misses the overall structure of\r the graph. The multiple views approach, one view of the entire graph and the other of a zoomed portion,\r has the advantage of seeing both local details and overall structure, but has the drawback that parts of the\r graph adjacent to the enlarged area are not visible at all in the enlarged views.\r A fisheye camera lens is a very wide angle lens that magnifies nearby objects while shrinking distant\r objects. It seems to be a tool for seeing local detail and global structure simultaneously. By means of\r exploring fisheye camera lens, we develop a user interface for browsing graphs using program analog of\r fisheye lens. Thus, our method seems to have all the advantages of the other approaches without suffering\r from any of the drawbacks.\r \r

再現白堊紀-冥霜煉獄的征服者

此研究是探討在目前全球因聖嬰現象後北極暖化,造成溫度持續在三十年內以每年上升攝氏零點五度,目前多數資料以顯示,對於地球內的生物生態產生了微妙的變化,在本文中將引述著名雜誌─科學人雜誌所刊登之關於全球暖化造成的生態環境影響;然而早在三億五千萬年前就已存在地球上的古老生物─蟑螂,順利的度過了多次的大滅絕,走過冥霜與煉獄。但是否會因為暖化作用而造成其生態影響呢?他又會不會成為少數存留並且大量繁殖的征服者呢?所以我們開始查詢白堊紀之資料,在研究、討論並製作改造完成實驗室氣溫控制冷熱溫差調節器,並從專業研究蟑螂生態的業界專業實驗室取得同一時期的實驗蟑螂物種,以期待本實驗更能具有更高的正確可信度;於特殊自行改造的觀察箱內進行整個實驗,已改變溫度並測量其進食狀況,瞭解蟑螂在溫度變化下的生態狀況。\r \r It’s easy to find the cockroach at any corner, such as school or house. They also hide in the refrigerator and stove.Thus,we are curious why they have durable vitality. This is the reason why we want to uncover the mysterious veil. According to data, we are curious about the environment of the cockroach and the temperature.Therefore,we want to imitate the situation of the ecosystem temperature at that time and inquire into its mystery. The purpose of Research is to make the violent changes, then discussing the meal which has attained its biggest existence rate. This uncontrolled experiment will influence the accuracy by factors.Therefore,we go to visit the laboratory personally and obtain some species of cockroach. Through the professional explanation and introductions, we make sure the direction of this experiment further. In this experiment we measure their appetite and the controls of the temperature everyday. They almost can crawl quickly along any material. We adopt the professional suggestion to measure with CO2 and O2.When the cockroach inhales CO2,we can observe the construction of the each part carefully. Through long-term observation, the food of the cockroach decreases, when the temperature rises to 20.6℃ or declines to 16.3℃,and it will stop moving when the temperature rises to 31.8℃ or declines to 8.7℃. When the temperature rises rapidly or reduce more than 15℃,the cockroach will look for shelter. Besides they easily get fainted when cockroach inhales CO2 without soil. The dinosaur were all buried underground, but why can the cockroach survive up to now? Probably, large land is their savior! Our conclusion is (1)The temperature that cockroach can exist from 49℃ to 3℃.(2)The suitable environment of cockroach growth is between 28.5℃ and 25℃.(3)The cockroach maintains their existence by eating under the low temperature 20℃ to 15 ℃.(4)Above 32℃ and under 7℃ the antenna is close to ground, its life is weaker.(5)The cockroach almost can live at any dilemma. But it can’t keep the prosperous life when it’s short of water.(6)From the above cockroach will be king of the world forever.

Are there any speical reasons the Traditional Korea horn bow is excellent?

Our traditional bow is a kind of horn bow which appeared at the side wall in the sepulcher\r around A.D 600. A lot of traits of the horn bow have been handed down to us in an\r unwritten form. This is the reason why I would like to research and investigate the several\r potential capacities in the field of Physics, such as structures, materials and efficiency.

長期服用安非他命對小鼠腦部紋狀體內蛋白質表

安非他命的濫用在台灣是非常嚴重的公眾健康及社會問題。安非他命會導致一連串的行為異常,包括在中腦紋狀體內釋放多巴胺及阻止多巴胺回收來增加使用者的活動力。由於安非他命會對腦細胞造成傷害,本研究的目的為探討低劑量、無立即毒性之安非他命(類似於人類使用習慣)長期施打下,是否會對C57BL6 小鼠大腦紋狀體內的蛋白質表現有影響。因此利用西方點墨法分析施打低劑量安非他命(2 到6 mg/kg) 約一星期之後,C57BL6 小鼠的大腦紋狀體中一些重要蛋白質(包括腺.酸受體A2A-R、第五亞型腺.酸環化.AC5、caspase-8 及PARP) 的表現是否有改變。實驗結果顯示,低劑量安非他命處理對這些蛋白質的表現並沒有明顯的差異。但利用二維電泳法可看到有少許蛋白質,在經過安非他命處理下有顯著的差別,如KIAA0193 homolog 、GOS-28、gammacrystallin A、malate dehydrogenase 和phosphoglycerate mutase isozyme B (PGAM-B)。這些蛋白質中,malate dehydrogenase 和PGAM-B 與代謝和產生ATP 有關,但前者是增加的,而後者減少,推測安非他命會影響神經細胞的能量代謝,因此長期施打安非他命對紋狀體造成的影響值得進一步探討。;The wide spreading use of amphetamine (AMPH) in Taiwan has become a serious public health and social problem. AMPH evokes a series of behavior abnormality including enhanced locomotor behavior by releasing dopamine and inhibiting dopamine-uptake in the striatum. Since AMPH is known to cause brain damage, the purpose of this study is to investigate the expression of several important proteins in the striatum of C57BL6 mice after chronic treatment with low and non-toxic dosages of AMPH (mimicking the common usage pattern of AMPH addict). C57BL6 mice were daily IP-injected with various dosages of AMPH (0 to 6 mg/kg) for one week. Expression levels of A2A adenosine receptor (A2A-R), adenylyl cyclase type V (AC5), caspase-8 and PARP in the striatum were analyzed by Western blotting analysis. Most proteins examined were not affected by this 1-week AMPH treatment. By the aid of two-dimensional gel electrophoresis, expressions of a few striatal proteins (such as KIAA0193 homolog, GOS-28, gammacrystallin A, malate dehydrogenase and phosphoglycerate mutase isozyme B (PGAM-B) in AMPH-treated mice were altered. Note that malate dehydrogenase and PGAM-B are two enzymes involved in energy metabolism and ATP generation. Interestingly, the former was increased and while the latter was decreased in AMPH-treated mice. Collectively AMPH may affect the energy metabolism in neuronal cells. These results suggest that the injury induced by long-term AMPH exposure warrants our further concerns and investigation.

Reduction fuel's amount when working the Internal-combustion engine

The aim of the work is inventing the way in which the power of the ICE is the same and consuming of the fuel decreases. The following methods of investigation were used: analysis of the experience of the improvement of ICE, modeling, the brainstorming, methods of Decition Theory of Invention’s Tasks (DTIT). In this work Ivan Semyonov based on a hypothesis that if the non-supporting combustion exhausts will be drawn with the vacuum from cylinder fuel for the same power it needed less. The practical meaning of this work is in the attempt of studying the question of improving the ICE for getting and making the more perfect ICE.