全國中小學科展

2022年

酢漿草,也要午睡嗎?~探討酢漿草的光觸反應

觀察紫葉(Oxalis triangularis)、紫花(Oxalis corymbosa)、黃花(Oxalis corniculata )三種酢漿草葉片在早上打開,晚上閉合主要是受生理時鐘影響。實驗比較發現紫葉、紫花、和黃花酢漿草在中午強光日照下,都有葉片閉合的午睡運動,且對光線的敏感度:紫葉酢漿草>紫花酢漿草>黃花酢漿草。再用遮光網遮蔭控制光度試驗中,發現光強度是影響酢漿草午睡現象的主要因子,與水分蒸散較無關。推測其目的是避免葉綠素因強光作用而產生光氧化現象(photooxidation),導致光合作用無法進行。而在溫度試驗也發現酢漿草在遮蔭高溫下(42℃)葉片會閉合,應是水分蒸散導致膨壓下降使葉片閉合。另在實驗過程中觀察到酢漿草也有觸發運動,在強風吹襲及水平、垂直晃動下均會導致葉片閉合,推測其目的在減少葉片摩擦產生傷口,避免病菌的感染。總結酢醬草葉片開閉受生理時鐘、光線、溫度、風吹震動及水分膨壓的影響。

探討海藻酸鈉與卡拉膠對角膜塑型片表面物化性質之影響

角膜塑型術的原理是於夜晚睡覺時,採用多弧的逆幾何設計來壓迫角膜,使角膜表皮細胞重新排列以達到矯正的效果。然而在夜晚配戴期間淚液分泌物會吸附於角膜塑型片表面,造成角膜擦傷、感染。本研究探討多醣類對角膜塑型片表面淚液分泌物之吸附的影響。從實驗結果中可以看到淚液分泌物會隨天數而堆積於鏡片上且表面粗糙度有大幅上升趨勢,在進行了市售主流系統產品之測試後發現其清潔效果並不顯著,而我們藉由蛋白質、脂質濃度分析、掃瞄式電子顯微鏡觀察及表面水接觸角觀察可以得出加入多醣類(AA/CRG各4.5mg/ml)的複方清潔可以最有效的提升清潔效果。未來我們期望可以將多糖類複方清潔液帶入安全性評估及成本分析並成功商品化。

Locus of the Points on Circumference of the n-th Circle that Formed by Moving the Center of any Radius Circles on the Outermost Circumference of Preceding set of Circles

This project aimed to study the motion which occurred from the end point on the circumference of the outermost circle by moving the center on the circumference of a preceding circle and the center of an innermost circle at origin. According to the study, when angular velocity was changed, it caused the different of loci. Based on the above information, finding the locus of the point on circumference of n-th circle that formed by moving the center of any radius circles on circumference of preceding set of circles was studied to get general equation. A set of circle and locus were created with GSP program. First, set the same radius circles on the X-axis with the first circle at origin, then found the relationship that occurred from the characteristics of locus. The result showed that if the ratios of angular velocity are 1:1:1, 2:2:2, 3:3:3, ..., …, n:n:n or 1:2:3, 2:4:6, 3:6:9, …,nw1:nw2:nw3, the characteristics of locus will be the same, while the others will be different. Finally, the equation of locus was found as follow: (x,y) = { ..........see in abstract...........} when .........see in abstract........... Where ri is the radius of i-th circle, zeta i is an angle between the radius of i-th circle and X-axis, wi is the angular velocity, t is elapsed time and alpha i is a starting angle between the radius of i-th circle and X-axis.

搶救生命大作戰 - AI姿態辨識在智慧型高品質CPR訓練引導式教學輔具系統設計之研究

本研究以CPR訓練模型輔具做為研究對象,根據專家說明CPR動作要正確純熟,除了依賴良好的教學輔具系統引導外,其功能上更需要有按壓姿勢的正確判斷,因此本研究藉助科技AI輔助,設計AI姿態辨識的智慧型高品質CPR訓練引導式教學輔具系統,經研究證實系統能逹到: 一、協助學習者熟練CPR的操作流程並解決訓練模型設計問題。 二、成功運用邊際運算功能提高AI辨識的速度。 三、拍肩反應、判斷按壓位置、深度更可利用壓力感測器及超音波感應器進行偵測。 四、能應用AI代替人類專家判斷按壓姿勢之正確性。 五、具專家模式且可獨立操作的CPR引導式教學輔具系統。 期望人人都能學到CPR正確操作技巧及爭取黃金復甦時間,搶救寶貴生命。

The influence of lanscape on nest preferences and behavior of twig nesting Hymenoptera

The occurrence and behavior of insects is significantly affected by the environment they live in. In this thesis, I dealt with the influence of structure of landscape on nesting preferences of Hymenoptera. For this comparison I had chosen to work with twig-nesting Hymenoptera, for which I have placed artificial nest opportunities into four biotopes – heath, edge of a heath, country lanes between fields and field. The studied location is located south of Znojmo near Podyjí national park. Particularly, I have focused on small carpenter bees of genus Ceratina. My results show that there is a big difference in the species distribution between the habitates of field and heath. The habitats of edge of a heath and country lanes make up a gradient between these two biotopes. The ecosystem of fields was preferred by a sphecid wasp Pemphredon lethifer and Ceratina cyanea. On the other hand, the ecosystem of heath was preferred by Ceratina chalybea, Ceratina nigrolabiata and megachille bee Hoplitis tridentata. I had also found out that in species that are more abundant on heaths, there is higher mortality of offsprings. Heaths were a place of the highest competition between species, as a result of which species with a lower body weight (Ceratina nigrolabiata) have been pushed into narrower twigs by larger species (Ceratina chalybea). I recorded a high number of nests in biparental bee Ceratina nigrolabiata, which were guarded only by mother in fields and country lane habitats. This may indicate that Ceratina nigrolabiata is only facultatively biparental, not strictly biparental as was considered until now.

What is the relationship between angular velocity and power efficiency of a twin blanded single rotor helicopter system, in hover?

A traditional helicopter requires 60 - 80% more power to hover than when in forward or lateral flight, making the manoeuvre extremely power inefficient. To maximise efficiency, industrially many properties of the helicopter and rotor have been changed and tested, for example: optimising blade shape, fuselage shape and changing weights of different helicopter components. This report in particular aims to find a relationship between power efficiency and angular velocity for a twin bladed hovering helicopter with a single rotor. The angular velocity of a blade measures the frequency of its revolution about a fixed point. A theoretical approach was first taken and then justified with empirical data. Firstly, a model for power efficiency was derived with William Froude’s momentum and blade element theory. The efficiency equations incorporated the thrust and power coefficients. Therefore, the research focused on determining values for these coefficients by manipulating equations, using industrial specifications and simulations from the XFOIL software. In order to validate the accuracy for such theoretically generated data, an experiment was conducted for a comparison. The theoretical and empirical data were concurrent, as they followed a similar trend and the empirical values overlapped within the theoretical error bars. The power efficiency for different angular velocities were then found by substituting values for the coefficients. The results demonstrated a positive relationship; where, as angular velocity increases, power efficiency increases too, then plateaus and repeats the same trend once again. The research raises many questions and could be extended by determining if a similar relationship exists for tri-copters and quadcopters.

PVA unveiled the actual role of starch in the Briggs-Rauscher reaction

The Briggs Rauscher reaction (BR reaction) is one of the famous oscillating reactions; the aqueous mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch exhibit color change between yellow and blue-purple repeatedly. The blue-purple color formation is due to the iodine test reaction caused by inclusions of polyiodides such as I3- and I5- in the helical structure of starch. Therefore, starch has been regarded as only an indicator in the BR reaction. But our seniors have found that the oscillation did not last without starch. They hypothesized that starch’s linear helical framework is necessary to elongate the lifetime of the oscillating reaction. If this hypothesis is correct, similar BR-type oscillations must be observed when other polymers with helical structures are used instead of starch. We found the literature which reports that polyvinyl alcohol (PVA) forms a helical structure and indicates the iodine test reaction. In our research, we studied the BR reactions using PVA, with different saponification degrees and viscosities. First, we studied the correlation between the structural features of PVA and the iodine color reaction by spectroscopic approach, exhibiting that PVA with low saponification form helical structures and show the iodine color reactions, which gives red color solutions. Second, we found that additions of the helical-structured PVA to the reaction solution instead of starch induces the BR-type oscillating reactions, while PVA without helical structure induces only a few numbers of oscillations. This is the world-first example of the oscillating reaction using PVA. The oscillation that lasted for 6 minutes with 23 oscillations was almost the same as that of the general BR reaction using starch. We concluded that the polymers with helical structures are intrinsic to elongate the lifetime of the BR reaction. Furthermore, we found that the addition of K3[Fe(CN)6], which has a high redox activity, in the reaction solution with PVA drastically elongated the lifetime (50 min) and increased the numbers of the oscillations (nearly 100 times). This result suggests that the oxidation-reduction reactions by the ferricyanide ion promotes the redox process of iodine and iodide ions.

Modification of silica surface with supercritical water as a tool indicating new possibilities of existing separation methods

Silica capillaries have been an integral part of the instrumentation used in many areas of analytical chemistry for decades, especially in analytical separations. In most cases, they are used without treatment, occasionally forceless chemical surface treatments are made to suppress or enhance the activity of silanol groups. The aim of this work was to disrupt the inner surface of the capillary, perfectly smooth from manufactory, so that relatively coarse and various structures would be created, and to study their influence on the separation efficiency. The uniqueness of the used solution is based on the use of special properties of water exposed to high temperatures and pressures (supercritical water), which is able to disrupt this chemically inert material because of its aggressivity. In total, over 2000 experiments were carried out in order to define conditions suitable for the formation of various types of surface structures. Due to the high amount of resulting data, our own database application was created, allowing not only to save the picture of the structure and experimental conditions information, but also to clearly sort them out and create image reports according to the specified parameters. Samples representing individual types of structures were then selected from this database and a number of silica capillaries with a configuration suitable for electromigration analyzes were prepared. The creation of a structured surface in the input part of the separation capillary enabled the separation of some classes of substances and biosamples, which cannot be analyzed on standard capillaries with a smooth surface. An example is the complete separation of two strains of Staphyllococcus aureus bacteria (MRSA and MSSA), or the use of the absorbing capabilities of a structured surface to study the interactions of these bacteria with bacteriophages. This ability was also used in the determination of Aspergillus fungus in a sample taken directly from the patient's lungs, where there was achieved a significant increase in the sensitivity of the analysis. Structured capillaries can also be used in the analysis of food samples, i.e., for the separation of β-lactoglobulins A and B in cow's milk, which belong to its main allergens.

Enhancement of Online Stochastic Gradient Descent using Backward Queried Images

Stochastic gradient descent (SGD) is one of the preferred online optimization algorithms. However, one of its major drawbacks is its predisposition to forgetting previous data when optimizing through a data stream, also known as catastrophic interference. In this project, we attempt to mitigate this drawback by proposing a new low-cost approach which incorporates backward queried images with SGD during online training. Under this new approach, we propose that for every new training sample through the data stream, the neural network is optimized using the corresponding backward queried image from the initial dataset. After compiling the accuracy of the proposed method and SGD under a data-stream of 50,000 training cases with 10,000 test cases and comparing our algorithm to SGD, we see substantial improvements in the performance of the neural network with two different MNIST datasets (Fashion and Kuzushiji), classifying the MNIST datasets at a high accuracy for the mean, minimum, lower quartile, median, and upper quartile, while maintaining lower standard deviation in performance, demonstrating that our proposed algorithm can be a potential alternative to online SGD.

HOST TARGET PROTEINS OF SPIKE PROTEIN OF SARS-COV-2

Coronavirus Disease 2019 (COVID-19) is a newly emerged infectious disease caused by the new severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV-2). In less than one year, the virus has spread around the entire world, killing millions of people and disrupting travel and business worldwide. During infection, the virus uses its Spike protein to dock onto the Ace2 protein on the surface of its human host cell. Spike is 1273 amino acids long and only a short fragment of Spike (319-541) is sufficient to bind Ace2. We hypothesized that the remaining protein sequences of Spike might have functions for viral replication beyond the binding of Ace2. We have performed Split-Ubiquitin protein-protein interaction screens to isolate human proteins by their ability to bind to Spike, and we have identified Annexin2A2 and Cytochrome b as novel human protein interaction partners of Spike. Annexin2A2 is involved in both endocytosis and exocytosis, and the protein interaction with Spike might help the virus to enter and exit its host cell. The presence of the mitochondrial Cytochrome b protein inside the cytosol promotes apoptosis, and the protein interaction with Spike could speed up sapoptosis of the infected human cell. The Nub cDNA libraries that we have generated also allowed us to screen for synthetic peptides that interact with Spike. We have isolated two synthetic peptides, FL1a and FL7a, derived from the non-coding parts of human mRNAs by their ability to interact with Spike. We found that both FL1a and FL7a interact with the C-terminal half of the Spike protein. We also found that FL7a is able to block the Spike-Spike self-interaction at the C-terminal half of the Spike protein and we think that this could block the reassembly of the Spike protein in the host cell during viral reassembly. We hope that those synthetic peptides could be used as drugs due to their ability to block protein-protein interactions of Spike with human host proteins that are essential for viral replication.