The Polar Equation from Butterfly Sprinkler Heads
This project aims to create the polar equations from the relation of the points on the centre line of the water twisted from Butterfly sprinkler heads. The water path includes inner rim, outer rim and centre line laying in the middle of the water path is used Rhombus’s property. The diagonals are perpendicular bisectors of each other to create the centre line. Then we create the polar equation of the centre line of water that twists from 4 types of the Butterfly sprinkler heads: edge frame, curve frame, STL and STL rotary. The polar equation of outer rim and inner rim is created by adding and removing the “ f ” value ( ; is the distance between the outer rim and the centre line, and is the geometric sequence that is ) of the coefficient (a) of the polar equation respectively. The results show that the formal equation of the centre line is which can explain the different properties of Butterfly sprinkler heads. If “ f ” value is increasing the water path and the blade will be wider that affects droplets distributing thoroughtly. Furthermore the relationship between the volume of water and the radius of water distribution can be processed to find the least time that can increase the appropriate moisture level of soil.
Novel Biotechnological Approach for Recognition and Purification of Antibody: Lectin Affinity Membranes
Immunoglobulin G is a glycoprotein structured molecule that is produced by the immune system and protects organism from harmful effects of antigens. Ig G amount in the blood plasma is an appropriate indicator of; infection, cancer, diabetes, cardiovascular diseases, Alzheimer and other autoimmune diseases. Besides, purification of Ig G used in the treatment of these diseases from naturel sources is carried out at high costs on the World market. It is hard to obtain Ig G in high amounts and without any decomposes, that’s why it is important to develop new systems that will help to recognize and purify Ig G antibody. In this project, my purpose was; recognizing Ig G antibody with efficient, high amounted, fast, easily, with less toxicity, economically and purifying Ig G in high ratios from its natural sources. For this purpose p(HEMA-EDMA) membranes are synthesized with free radical photo polymerization method and characterized according to SEM images, swelling behaviors FTIR analysis and elemental analysis. In order to adsorb Ig G to polymeric membranes; polymeric membranes are activated with silanization agent (IMEO) and derivatized with Con A which is a lectin affinity ligand. In the SEM results it is examined that membranes are in spherical structures. Highest swelling value is determined as 224.8%.Binding of IMEO was demonstrated with FTIR and Elemental Analysis. Optimum conditions for Ig G adsorption to membranes are; 1.5 mg/ml initial Ig G concentration, 30 minutes of adsorption time, pH 4 citrate buffer 37 0C and without any different ion strength. Optimum adsorption capacity is determined as 253.8 mg/cm2 and it is also determined that this value is 7 times higher than nonspecific Ig G adsorption to p(HEMA-EDMA) membranes. Ig G adsorption-desorption cycles (5 times) proved that product is reusable without losing its adsorption capacity. According to the electrophoresis, Ig G could be desorbed in pure form without any denaturation to its structure.
Sustainable Graphene Oxide Support for Ruthenium Catalysts to Improve the Efficiency of the Hydrodesulfurization of Thiophenes
沙烏地阿拉伯 is the largest oil exporter in the world. 64,000,000 tons of sulfur oxides are produced every year through the combustion of organic sulfur compounds in the oil industry. This leads to several environmentally serious problems, including air pollution. This research provides a novel strategy to utilize natural-based Graphene Oxide (GO) as a support for ruthenium (Ru/GO) to functionalize as a green catalyst for hydrodesulfurization. Physical activation of camel bone samples was carried out by carbonizing them at 500oC to produce camel bone charcoal. Modified hammer’s method was employed for GO production, followed by doping of ruthenium in a simple synthesis step. The prepared catalyst has been characterized by XRD, SEM and EDX techniques. Thiophene and 3-methylthiophene were used as model compounds in the hydrodesulfurization process. The catalytic reactions were carried out at atmospheric pressure in a continuous up-flow fixed-bed quartz reactor. The composition of the sulfur containing gaseous products was analyzed by gas chromatography. The product distribution achieved for thiophene was 3-6% butadiene and 76-77% butane. And for 3-methylthiophene, it was 32.3% of pentaned 1-pentene and 2-pentene and the selectivity percentage was 45%. Ru/GO has been found to be an excellent catalyst of thiophene and 3- methylthiophene hydrodesulfurization and is a considerable improvement when compared to the commercially available catalysts. The prepared catalyst shall potentially lead to the reduction of sulfur pollution in the future. The positive effect on the environment could be substantial.
A Modular Comprehensive Assessment Platform for Aircraft Maintenance
We were very curious about whether the aircraft will suffer lightning damages during flight, so we tried to search the answer on the internet. According to the searching results, we realized that during flight departure, passenger planes can suffer lightning damage. As a result, there will be lightning strike points, which needs immediate solutions for safety concerns. Besides, we found out that the exterior aircraft components, such as aircraft body, wings, tail, turbine engine and other areas, are vulnerable to corrosion, which also needs immediate solutions. Luckily, we came across a chance to chat with the engineer who works in the airport. Through that meeting, we knew that the maintenance of the aircraft is very important. However, the maintenance of the components depends on professional technicians, weather, the surrounding noise level, and other environmental effects. As a result, we think that it is initial for us to develop a device that can automatically complete the missions of aircraft maintenance. Below are two objectives that we need to complete: 1. Complete a non-destructive testing for aircraft damage, including corrosion and lightning strike points. Assessment areas include: Aircraft body, airplane wings, tail of the aircraft and the turbine engine 2. Engage in scanning results to analyze and predict for flight readiness. The collected results will proceed to the aviation company for inspection and maintenance. Based on these two objectives, we designed an automatic platform for aircraft maintenance. Below are four innovations of this platform: 1. we developed a method to replace the current stage based on the manual operation of the aircraft maintenance, the use of AGV (Automated guided vehicle) and the robotic arm combination. 2. Design a modular platform based on this method, including telescopic four-wheel independent rotating chassis and locking mechanism, scissors lifting mechanism, double sided synchronous belt forward detection telescopic mechanism, etc. The platform can shrink at the minimum height of A320, convenient access to the machine abdomen. 3. The positioning algorithm of the platform relative to the aircraft is proposed.
Auto-control water consumption System
By saving water you are saving lives including yours. All of us know that water is an invaluable and priceless gift. We can’t dispense it. The consumption of water differentiate from one country to another, we may use over quantities of water, in other countries people are thirsty living under the limits of poverty .It’s very important for agriculture, industry even human animals and plants can’t live without water. But people are careless, they consume a huge quantities of water in shower, washing car, gardening…. So that we thought to make this brilliant project F.W.S (frugal water system). This system is connected with you mobile phone by an application that shows you your water consuming and makes you control it. It record in every minute your consumption. This control system helps us to preserve water for the future generation. Besides, it tells you the price that you will pay and warns you if you pass the quantity of water that you should consume in a defined period. So you can also save your water bill. So we have to make this project works to let every person know that he is doing squandering water. With this system we can save planet resources of water. Finally, the water is as precious as our lives and with frugal water system, we will be able to monitor and control our water consumption. Also be alerted in the event of a leak or flooding. This project helps us to preserve water, reduce and avoid over-consumption. So we have to stand together against water squandering by making this project works.