Exploiting the beneficial role of Biochar and Titanium (Ti) as a Sustainable and Green Strategy for Improving Agricultural Output in Saudi Arabia: Wheat as an Using Wheat as a Model
The present research work aimed to assess the impact of biochar (BC) amendment (5%) and foliar supplementation of titanium (Ti) at a concentration of 50 mg L-1 TiO2 on the growth, chlorophyll content, and biochemical parameters of wheat (Triticum aestivum L). The results demonstrated significant improvements in several aspects of wheat physiology due to these treatments, both individually and in combination. Plant height, as well as fresh and dry weight of wheat, exhibited substantial increases when subjected to Ti and BC treatments, with the highest enhancements observed in plants treated with both Ti and BC. Furthermore, chlorophyll content, including chlorophyll a, chlorophyll b, total chlorophylls, and carotenoids, showed marked increases in response to individual Ti and BC treatments, with even greater improvements when both treatments were combined. In terms of biochemical parameters, the content of proline, sugars, and free amino acids significantly increased in plants grown in soils amended with BC. Additionally, foliar Ti treatment led to elevated levels of these biochemical constituents. The combined treatment of Ti and BC resulted in the most pronounced effects. Moreover, oxidative damage parameters, such as hydrogen peroxide, lipid peroxide, and electrolyte leakage, were notably reduced in plants subjected to Ti and BC treatments, either individually or together. The activity of antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase, exhibited significant increases in response to Ti and BC treatments, further emphasizing their beneficial effects on wheat plants. Overall, this investigation shows that biochar amendment and titanium foliar supplementation both have beneficial effects on wheat development and biochemical parameters; these findings may be relevant to efforts to increase crop productivity and stress tolerance.
Fabrication of Tandem Dye-Sensitized Solar Cells to Enhance Photovoltaic Performance
Energy has had an enormous impact on the development of technology and is a main factor in humans’ advancement towards an evolved society. Nevertheless, nonrenewable energy resources – which are the most effective in everyday application - have led to changes in the climate, environment, human health, and the world in general [1], which has encouraged researchers to switch to the use of renewable energy sources. Solar Cells are one of the most effective resources that rely on renewable energy. They come in a variety of types, operation methods, and efficiency as shown in Figure 1, including Dye-Sensitized Solar Cells (DSSC), which, inspired by photosynthesis in plants, uses photo-sensitive dye to capture sunlight and generate electricity. DSSCs were proved to have generated a great deal of interest and are one of the most promising solar cells among third-generation PV technologies, due to their low cost, simple preparation, good performance, and environmental friendliness compared to conventional photovoltaic devices [3]. However, their efficiency is quite insufficient for everyday use. Previous studies proved that Tandem DSSCs – which are two dye-sensitized cells stacked on top of each other – are able to enhance cell performance. The light absorption range of a tandem cell is increased because the bottom cell behind the top one absorbs and uses the incident light that was not absorbed by it [4]. It operates as shown in Figure 2, where the light photons excite the electrons of the dye molecules. The electrons are then transported to the FTO (conductive glass) by the semiconductor, which is used in the figure as TiO2 nanoparticles. The electrons pass through the circuit to perform the work, then move to the counter electrode (shown as Platinum). They are then transported by the electrolyte (I-/I3-) back to the dye molecules, and the process is repeated.
Flavored Nanofiber Strips Loaded with Amoxicillin as an Alternative Method for Treating Bacterial Infections in Children
Semisynthetic penicillin, Amoxicillin, is a broad-spectrum antibiotic that is widely used to treat bacterial infections in children suffering ear, nose, and throat infections, genitourinary tract infections, skin infections, and lower respiratory tract infections1. This antibiotic works against both gram-positive and gram-negative bacteria, such as Listeria monocytogenes, Haemophilus influenza, Streptococcus pneumonia , Streptococcus pyogene and Escherichia coli1,2. It shows antibacterial activity by inhibiting dd-transpeptidase, which maintains the integrity of the bacterial cell wall which results in bacterial cell death due to a fragile cell wall3. Nonadherence to medication was associated with 50% of drug-related hospitalizations in children4. In order to improve adherence and influence clinical outcome, it is important to acknowledge the importance of drug palatability to children4–6. The currently available liquid suspension form of this antibiotic is administered to patients through oral/GI routes. It is also available in capsules or tablets for adults7–9. In the gastrointestinal tract, the drug has to withstand variable pH conditions and enzymatic degradation , mucus and mucosal barriers to survive resulting in limiting drug bioavailability10,11. In addition to conventional drug delivery formulations, nanofibers can be used to deliver drugs orally, topically, and through buccal or transdermal routes12. Drug-loaded nanofibers offer many advantages as a delivery system, including their porous structure and their efficient delivery of various drugs and bioactive molecules including hydrophobic and hydrophilic drugs12–14. Considering that amoxicillin palatability can affect children patients’ compliance and due to the advantages of both nanofiber drug delivery system and drug delivery through buccal routes, hence, this project aims to prepare flavored electrospun nanofibers loaded with amoxicillin to mask the unpleasant taste of the drug for treating children with bacterial infection. Nanofibers loaded with amoxicillin can be applied between the child's gum and cheek, allowing the fibers to dissolve in mucus and penetrate directly into the bloodstream.
Automated Alternative Compression/Traction of Lower Extremities AACT as a Musculoskeletal Countermeasure to Mitigate Bone Loss and Muscle Atrophy in Microgravity
Space Medicine and relevant sciences are still considered a new era; the first humankind steps toward the space took place since less than 60 years. It has been noticed the adverse effects of microgravity on the human body in different aspects, our concern here is the musculoskeletal aspect. On the ground we didn’t notice how we can stand up, or how our muscles and bones of the lower limbs can keep us standing up right. This is by a complicated process including the bones, the equilibrium, and the anti-gravitational muscles of the lower limbs which occurred without thinking about it. The force of Earth gravity against our bones of the lower limbs makes them harder and makes the muscles stronger, because they are interfacing the earth gravitational force every moment we are standing up, as per Newton’s third law (for every action in nature there is an equal and opposite reaction), such forces are unavailable in space and its effect being obvious on arrival to earth after long stay space flights, so being unable to keep standing upright easily on their arrival. On return to earth the routine medical examinations revealed loss of astronaut muscle mass and bone density particularly of their lower extremities because they did not use them in space for a long time. Currently, astronauts on board of ISS (International Space Station) they accomplish daily tasks including resistive exercises ARED “Advanced Resistive Exercise Device” in form of treadmill, ergometer, and weightlifting machine, to decrease the loss of bone density and muscle mass of their lower limbs. Despite their discipline to those exercises they still lose 1-2% of the muscle mass and bone density that give importance to add some protective measures to keep their muscles and bones healthy. Through this article, the idea is to make a device such AACT (Automated Alternative Compression/Traction) to be applied daily to the astronauts lower limbs as part of their daily exercise during space flight to give push/traction forces to astronauts lower limbs to prevent or at least decrease such loss, by AACT we are mimicking the gravitational force of earth on astounds lower limbs during long space flights to let them be healthy till they come back.
Natural resources utilization for the in-house production of fluorescence lipid nanoparticles
Nanotechnology, a transformative force, has steadily gained traction across multiple scientific disciplines, including physics, chemistry, engineering, and biology. It offers unprecedented capabilities, especially in the realm of nanoscale particles, ushering in new paradigms in various applications. One of the most revolutionary applications of nanotechnology is in the pharmaceutical sector. Here, nanoparticles have transformed drug and vaccine delivery systems, offering both efficacy and precision. Among these nanoparticles, lipid nanoparticles (LNPs) have stood out, especially for their role in delivering nucleic acid-based drugs and vaccines. These LNPs are intricate assemblies composed of lipids and nucleic acid complexes, offering an amalgamation of stability and deliverability. Such properties have rendered LNPs as invaluable tools in enhancing therapeutic efficacy while minimizing off-target side effects. The myriad of nanoparticles available includes the likes of silver, gold, and lipid nanoparticles. However, the emphasis of this research lies with lipid nanoparticles, given their widespread success in the pharmaceutical arena. LNPs have showcased their potential in delivering drugs with low therapeutic indices, emphasizing their capability to act as versatile platforms for novel drug development. Recent advances have further expanded the horizons of LNPs, paving the way for novel antisense oligonucleotides, innovative vaccines, and complex lipid nanoparticle formations. Characterizing these nanoparticles is paramount, not only for the development of novel drugs but also to comprehend their in vivo behavior. Their multifaceted nature, stemming from their unique excipients, core-bilayer design, and varying sizes, makes their characterization a critical step in the research and development pipeline.
Bifunctional Nanostructured TiO2 photoelectrocatalyst for Improving Overall Water splitting performance
Titanium dioxide TiO2 is a semiconductor, that has great chemical and physical properties, such as remarkable resistance against corrosion, chemical stability, and it’s a non-toxic material. Due to these properties, it rises as an excellent candidate for a wide range of different applications, such as being a popular material for solar cells, paints, cosmetics, energy storge devices, and water splitting. For photoelectrochemical water splitting to generate Hydrogen, a large surface area is essential, to be maximized to enhance photocatalytic redox processes and hence improve overall efficiency. Therefore, different methods have been utilized to fabricate TiO2 nanotubular structure. However, they either encounter a difficult process because of a long synthesis time or the need of expensive precursors. In our work, we demonstrated a study of enhancing 1 D TiO2 film to perform as a bifunctional catalyst (works as cathode and anode). As it is known that TiO2 is kinetically hampered as cathode for producing hydrogen from water, this is due to sluggish electron transfer at the interface between TiO2 and water and the conduction band of the TiO2, which is more negative than H+/H2. To tackle this problem, TiO2 film should be modified. In this work, we modified the TiO2 as bifunctional by investigating different parameters in detail, like the anodic oxidation solution content, anodic oxidation time, and the role of the polyethylene glycol chain. Electrochemical characterization and SEM, and XPS were utilized to prevent the nanotubes structure and to confirm the chemical bonding as well as investigating the physical properties such as resistance and electron kinetic mobility.
Fabrication of Highly Efficient and Cost-effective Tandem Dye-sensitized Solar Cells for Building Integrated Photovoltaics
In recent years, there has been an extreme rise in population and economic development, which requires a great demand for energy worldwide. Global energy consumption has been increasing nearly every year for over half a century [1]; it is rapidly rising in the form of nonrenewable energy, such as coal, oil, natural gas, and fossil fuel. Fossil fuel overreliance has resulted in a dramatic rise in atmospheric carbon dioxide (CO2) concentrations.
Desert to Fertile Land: Developing TEPA‐modified montmorillonite clay as an efficient CO2 adsorbent to enhance soil fertility
Global warming is a phenomenon in which the Earth's overall temperature rises as a result of increasing concentrations of greenhouse gases in the atmosphere. Among the major greenhouse gases, carbon dioxide (CO2) is the primary greenhouse gas that contributes significantly to global warming [1,2]. The concentration of carbon dioxide in the atmosphere is rising due to human activities such as burning fossil fuels (coal, oil, natural gas), as well as changes in land use and vegetation [3]. Carbon dioxide and other gases, such as methane and nitrogen monoxide absorb infrared radiation and redirect it back to Earth, warming the planet [4]. This rise in temperature can impact ecosystems, climate, water resources, agriculture, public health, and societies in general [5]. To combat global warming and reduce carbon dioxide concentrations in the atmosphere, many countries around the world, including Saudi Arabia, are working to achieve a vision to reduce carbon emissions by reducing their carbon emissions by 278 million tons per year by 2030 in line with the Paris Agreement, for climate. The Kingdom is committed to generating 50% of its electrical energy from renewable sources by 2030. In addition to the shift in the local energy mix, the Saudi Green Initiative is implementing a number of ambitious programs and projects to reduce emissions. These programs include investing in new energy sources, promoting energy efficiency, and expanding carbon capture and storage programs [6]. Through these initiatives, the Kingdom will be able to achieve its climate goals and establish a sustainable future (Figure 1). In addition, the Paris Climate Change Agreement includes 196 countries and the European Union, covering most of the world. This agreement aims to achieve carbon neutrality by taking measures to reduce carbon dioxide emissions [7].
Development of a nano-filtration membrane using different linear aliphatic amines and linear cross-linkers for purification of expensive and precious organic solvents
Theseparation, purification, and recovery of precious organic solvents is a huge challenge for many industriesincludingpetroleumandpharmaceuticalcompanies,sincethesecompaniesusehugequantities of organic solvents [1-2]. Natural dissolvable nanofiltration(ON)has atremendous potential for supplantingafewenergy-concentratedcrudepurgingtechniques,similartorefiningandextraction[3-4- 5]. The importance of OSN is obvious from the fact that one cubic meter of methanol requires 1750 MJ of energy for distillation since the process of distillation is comprised of heating, evaporation, and condensation while OSN can purify the same volume of methanol by consuming 3 MJ of energy [6-7]. Additionally, OSN is a useful technology since it is simpler to use than conventional purification and separationmethods.Themembrane'sporestructure,whichinfluencesbothitsselectivityandpermeance, hasasignificantimpactonhowwellthemembranesperform[8-9].Ingeneral,thetrade-offbetweenflux andselectivityaffectsthemembrane'sperformance.Asaresult,themembranes'fluxandpermeabilityare affectedbythetailoringandtuningoftheirporestructure.Therefore,designinganefficientnanofiltration membranes with ideal porosity is highly desirable. Interfacial polymerization (IP) is highly versatile as it provides a freedom of selection of various monomersfortargetingaspecificapplicationsuchasnanofiltrationandreverseosmosisThepotentialfor organicsolventnanofiltration(ON)toreplacevariousenergy-intensivetraditionalpurificationtechniques, suchasdistillationandextraction,isenormous.[8-9].Despitethefactthatmanydifferentmonomershave been successfully used by utilizing IP to create thin film composite nanofiltration TFC-NF membranes, one of the main limitations of such membranes continues to be the poor selection of closely related comparable nanometer sized solutes. Many efforts are still being made to develop potential monomers with the perfect properties for creating membranes that operate excellently [10-11]. Another strategy is also getting more popular in which different porous additives are added to the TFC membrane either at thesupportleveloractivelayerlevel.Theseadditivesincludecarbonorganicframeworks(COFs),metal organic frameworks (MOFs), hyper-cross-linked porous polymers (HCPs), and natural polymers such as chitosan[12-13-14-15]. However,maintainingthecrystallinity ofsuch additives,particularlyMOFsthat lead to crystalline membranes, is extremely difficult while other additions suffer from aggregation and agglomeration that results in membrane flaws that impair the performance of the membranes [16]. Therefore,changingthechemistryofthereacting monomerduringIPcansignificantlyalterthestructure of the resultant active layers of the membranes. The current study was carried out by using linear aliphatic amines 4A-3P and 4A on a crosslinked PAN support. The study was carried out through interfacial polymerization between either 4A-3P and TPC or 4A and TPC on crosslinked PAN. In comparison to the previous studies where cyclic amines such as piperazine or aromatic amines such as meta-phenylenediamine (MPD) are used, we have used linear aliphatic amines 4A and 4A-3P crosslinked with organic phase containing terephthaloyl chloride (TPC) asacross-linker.TheIPreactionwascarriedoutbetweenamineandTPConacrosslinkedPANsupport. The fabricated membrane was extensively characterized by using scanning electron microscope (SEM), ATR-FTIR, water contact angle (WCA), energy dispersive X-ray (EDX) and elemental mapping . The fabricated membrane was used for OSN applications by using dead-end filtration setup.