高分子複合材料的性質、製作與分解
由於塑膠不能在自然情況下順利分解,所以我們在塑膠中添加其他成分使塑膠可以較易分解。我們選定常見的塑膠—熱塑性的耐綸-66。在聚合物的製作過程中添加葡萄糖、澱粉、洋菜粉末以及甲基纖維素,並觀察加入添加物的塑膠在結構上是否有變化?其塑膠在線型時之張力是否有增強?耐酸鹼性是否有變化?由實驗結果我們可以得知含有甲基纖維素之耐綸-66 所能承受之張力強度最高,且其彈性係數也比無添加物之耐綸-66 高出近2 倍;而含可溶性澱粉之耐綸-66 所能承受之張力最小,且彈性係數也最低。此外,進行生物分解的實驗可發現,含洋菜粉末的耐綸-66 分解的速率最快。使用400 倍的光學顯微鏡可發現含有洋菜粉末的耐綸-66 表面與其他耐綸-66 複合材料差異較大,值得進一步研究。;Because plastic cannot be decomposed naturally by itself, therefore, additives needed to be added to facile the decomposing process. Let us choose one common material: thermoformed Nylon 66. During the formation process, add the following additives: glucose powder, methyl cellulose, soluble starch and agar powder. Observe whether adding additives would allow changes to occur structurally, or would the elasticity be improved when exist in a linear state, or even it would form a better pH resistance property. Most importantly, observe whether the decomposing rate has increased or not. According to the experiments, when Nylon 66 contains methyl cellulose, it can sustain the highest tension. Its coefficient of elasticity is 2 times as large as the original one. In terms of the data, we can also observe that when Nylon 66 contains soluble starch, it has the lowest ability to sustain tension. Besides, it has the lowest coefficient of elasticity. And when Nylon 66 contains glucose, it has the highest rate in the process of decomposing. As we look at the surface of polymers under 400 diameters, we can observe that the Nylon 66 with agar powder has some filiferous substance. But we have not confirmed what the matter is. As to decomposing rate, we found that when Nylon 66 contains additives, it could accelerate its decomposing rate. And the one with agar powder has the highest rate of decomposing.
聚乳酸/天然纖維複合材料之研究-探討加入玉米葉纖維對機械性質之影響
本研究以玉米葉纖維做為聚乳酸纖維的補強材料,並以加入的玉米葉纖維長度為操縱變因,探討其對聚乳酸/玉米葉纖維複合材料機械性質的影響。實驗設計以純聚乳酸為對照組,以加入1mm, 2mm, 5mm, 13mm玉米葉纖維的聚乳酸複合材料為實驗組。本研究以拉伸強度和耐衝擊值來判斷機械性質的強度。 實驗數據顯示,實驗組的拉伸強度與對照組差距不大,但在耐衝擊值卻比對照組高出許多。除此之外,拉伸強度和耐衝擊值都顯示加入2mm玉米葉纖維在實驗組擁有最佳的數值。另外,加入越長的玉米葉纖維反而不會擁有較佳的機械性質。未來期待聚乳酸複合材料能夠應用在更廣的層面。