摺紙數列-相關問題探討
1. 遊戲規則:將1~ 2m × 2n的連續正整數,由上而下、由左而右依序填入 2m × 2n的方格內。操作規則允許將2m × 2n做往右或往左或往上或往下的完全對摺,直到操作至所有單位方格均疊成一行,此同時有數字也由上而下形成一數列。2. 本研究即是探討操作完成的數列之數量與數字間的關連性。3. 我們發現:(1) 數列之數量與巴斯卡三角形有關。(2) 形成的數列必符合內文的 [ R(L) 性質]、 [ D(U) 性質]、[ R&D 性質]、[D&R 性質]。
1. Rules of thegame: Fill in order the continuous positive integers 1~ 2m × 2n, from top to bottom and from left to right in the 2m × 2n check. The operational rule allows a complete fold of 2m × 2n either rightward or leftward, or upward or downward, until all the check units pile up in a line. At the same time, all the integers form a series from top to bottom. 2. This study explores the relationship between the number of the series and the integers after the operation. 3. Our findings are: (1) The number of the series is related to Pascal triangles. (2) The series formed meet the properties mentioned in the study: [the property of R(L)], [the property of D(U)], [the property of R & D], and [the property of D & R].
液晶面板在不同電場下穿透光譜之研究
本研究主要是探討液晶面板在不同的電壓下,對紅外光區及可見光區之穿透光譜。藉由控制外加液晶面板兩側的電壓,改變內部的電場強度,驅使液晶分子長軸方向改變(偏轉),以達到控制穿透率之目的。施加於液晶面板兩側的電壓V大於起始電壓V0時,液晶分子長軸受電場作用與電場方向平行,減弱引導偏振光扭轉之能力,讓部分光通過偏振片。令及分別代表穿透率達到最大穿透率之10%及90%時的外加電壓,則定義「光-電開關斜率」γ為:γ =(V90-V10)/V10。透射光強度與外加電壓關係曲線則稱為「光-電開關特性曲線」。穿透率除與液晶分子之旋光程度有關,我們也做了在不同電壓下,液晶分子之穿透光譜,並討論其特性。The main idea of the project is to discuss the transmittance spectra of liquid-crystal device in the range of infrared and visual light (400~900 nm) with different electric field by changing voltage. Different biases are applied to the liquid-crystal cell, causing the axis of liquid-crystal to rotate, and the transmittances are measured. If the application of bias is greater than the threshold voltage (V0), the axis of liquid-crystal will be parallel to the electric field, and make the beam pass through polaroid. Electro-optical switching slope γ is defined as γ =(V90-V10)/V10 , where V10 and V90 are the applied voltages enabling output light signal reaches up to 10% and 90% of its maximum intensity, respectively. It is understood that transmittance depends on the optical activity of liquid-crystal cells. Besides, we will discuss the relation between wavelength and transmittance of liquid-crystal cells.
蛙!到底發生了什麼事?探討溪谷生態系畸形蛙的發生原因及其生態學之研?
Our research started from June, 2003 to May, 2004. During these twelve months, we collected and discussed the basic ecology material of malformed “ Rana latouchii ”, which we call it frog in the following paragraphs . Thanks for the favorable geographical position, we collected the first-hand data in the area of Jin-Mian Mountain foothill gully situated in Taipei. Our investtigation project includes:the percentage of the malformed frogs in a whole race, the geographical distribution of dominant-abnormal frogs, the sexual distribution of dominant-abnormal forgs, and the possible roots for the generation of malformed frogs. We have altogether carried seventy-six times field investigations. In those investigations, we focused our research on the randomly-sampled 580 Rana latouchii. In these 580 sample, there are 190 female, 350 male, and 40 adolescent. We discovered seventy-six malformed frogs, constituteed by 21 female, 53 male and 2 adolescent. In another words, the occurance of malformed frog in a race is around 13.1. %. In our observation, we can classify dominant-abnormal frogs, “Rana latouchii”, into eight species. Here are the species: 1. the entire body is obviously malformed, 2. with only one eye, 3. in lack of appendage apod, 4. in lack of arms,5. in lack of palms, 6. with excess webbed toes, 7. the maltfromed of appendiculars, 8. the lack of toes on the palms. Within these 8 species, the last species has the highest occurance, 66.38% in aproximation. If we look at the classfication by sex, the ratio of female to male is around 1 to 2.52(1:2.52). However, the possibility of being maleformed is regarded as the same for female and male frogs in the same group. In statistical term, our research shows that the chi-square is 1.742 while our degree of freedom is 1 and confidence level is 95% (X2=1.742,df=1,p>0.05). During the research, we also observe that each malformed species affect different living activities of malformed frogs. In the worst situation, the malformed nature can result in shorter life. In our sampling area, malformed frogs mostly reside in high concealment and high humidity location. In our research data, within these area, our re-captured rate for malformed frogs is 25% and hirudin-parastical rate is 4.31%. As our research shows, the occurance of malformed “Rana latouchii” in our selected area results from 3 main causes: First, the parasitism of leeches or parasitic worm;Second, the agriculturally chemical contaminants;Third , the injured causes from escape from predator. 本研究自2003年6 月至2004年5月為止,共12個月的期間,於臺北市內湖區金面山南麓溪谷,對拉都希氏蛙(Rana latouchii)族群之畸形蛙個體進行基本生態資料的蒐集與探討,調查項目包括:族群中畸形蛙發生的比例、畸形蛙外部形質異常分佈的情形、族群中雌蛙與雄蛙發生外部形質異常之情況及可能造成畸形蛙產生的原因。 研究期間共進行了76次的野外調查,總紀錄了拉都希氏蛙580隻,雌蛙有190隻,雄蛙有350隻,幼蛙有40隻;畸形蛙個體共紀錄有76隻,雌性畸形蛙有21隻,雄性畸形蛙有53隻,幼體畸形蛙有2隻。族群中畸形蛙發生率約為:13.10%,外部形質異常的畸形拉都希氏蛙總計有八大類,包括:1.整隻個體形質畸形,2.單眼個體,3.附肢缺少,4.附肢缺臂,5.附肢缺掌,6.腳掌多趾,7.附肢腳掌畸形,8.附肢腳掌缺趾,其中以附肢腳掌缺趾類的66.38%發生率最高。畸形蛙中雌雄比約為1:2.52,族群中雌蛙與雄蛙發生畸形的比例並無顯著的差異(X2=1.742,df=1,p>0.05)。 不同部位形質畸形的發生,將會影響畸形蛙的個體活動,甚至可能降低畸形蛙的存活機率。研究調查樣區中,畸形蛙較常活動於濕度高且隱蔽度大的分樣區中,畸形蛙的重複捕捉率為25%,被水蛭寄生的比例則約是4.31%。 由調查研究結果顯示,造成內湖金面山區南麓溪谷拉都希氏蛙畸形蛙發生的主要原因,推測可能有下列幾種:(1)水蛭或是吸蟲類的寄生;(2)農作過程中的化學污染物;(3)逃脫掠食者捕食過程受傷。
本土藥材金銀花的研究與分析
本實驗以薄膜色層層析(TLC)、高效能液相層析(HPLC)分析等化學方法,進行金銀花品種差異的鑑識;此外,配合生藥學的顯微鏡檢視,如中藥材組織鏡檢、藥材粉末鏡檢等比對,以期找出辨別金銀花品種的方法。研究至目前為止,由金銀花之薄膜色層分析的Rf值(0.225、0.425、0.7、0.85、0.95)可確認出金銀花藥材,並得知金銀花藥材中皆含有綠原酸的成分;以高效能液相層析的圖譜與成分峰的積分面積可用來判別金銀花的品種,並從質譜分析瞭解成分含量;進行生藥學的藥材粉末組織鏡檢,發現無法作為金銀花藥材的分類憑藉。未來將持續延伸實驗,朝向中藥奈米化與一般粉末在藥效、成分上差異的比較,並進行金銀花萃取液的抗菌作用試驗,瞭解不同品種之金銀花藥材在藥理作用的異同,接續著奈米化藥材的應用與實踐。Using thin layer chromatograph (TLC) and high performance liquid chromatography (HPLC), we can study how to differentiate the species variation of honeysuckle; beside, based on the observation of biopharmaceutical microscope, such as comparing the histology of Chinese herbs and its powder, we suggest that we could differentiate the species of honeysuckle. From the present, firstly, we could distinguish the honeysuckle from other herbs by the Rf value of TLC(0.225, 0.425, 0.7, 0.85, 0.95), from which we find that all honeysuckles contain the component of Chlorogenic acid. Secondly, we could tell the species of honeysuckle according to the map of HPLC and the peak area after integration, as well as the integrants of honeysuckle by way of LC-Mass analysis. Thirdly, while studying the histological analysis based on the observation of biopharmaceutical microscope, we found that it shows no difference between all the honeysuckles; thus, it fails to be a scientific method used to distinguish the herb honeysuckle. However, in the biochemical experiments of honeysuckles, we found honeysuckles from different sources and the place of origin shows difference in their antibiotic effect, showing the importance of local medicine. When it comes to my future work, in order to extend my experiments on honeysuckles, I would compare the nano-scale honeysuckle powder with normal-sized one in their clinical effects and components.
微陣列基因分析法探討心肌細胞在機械性展延下的基因表現
高血壓所誘發的機械性展延是造成心肌肥大的基本因子,本實驗即藉由微陣列基因分析法同時大量的分析機械性展延所造成心肌細胞的基因表現。將新生鼠的心肌細胞施以 20﹪的機械性展延,抽取其 mRNA製作成 cDNA 探針與現成的 cDNA 晶片進行雜漬反應 (此晶片上包含了 480個如訊息傳遞、控制細胞生長週期、細胞骨架等的已知基因),在眾多有因為機械性展延而造成基因表現差異的基因中,我們選擇了 eNOS 基因(內皮細胞 NO合成?)進行西方墨點法及 NOS活性和 NO 產生量測定的實驗,進一步證實 eNOS 的基因表現量的確是增加的,此一結果與微陣列基因分析所得之結果不謀而合。 Mechanical stretch induced by high blood pressure is an initial factor laeding to cardiac\r hypertrophy. The use of cDNA microarrays has made it possible to simultaneously analyze\r stretch-induced gene expression in cardiomyocytes. Neonatal rat cardiomyocytes were cultured on\r malleable silicone dishes and were stretched by 20%. We compared the transcript profiles of\r cardiomyocytes under mechanical stretch for 60 minutes by hybridization of cell-derived cDNA to\r DNA probes immobilized on microarrays. The microarrays contained probes for 480 known genes\r including signal transduction, cell cycle regulators, cytoskeleton and cell motility, and so on. Eighteen\r genes were indentified that showed significantly differential expression in response to mechanical\r stretch in cardiomyocytes. Of the represented genes expressed, endothelial nitric oxide synthase (eNOS)\r genes was the most interesting one. Northern blot and western blot analysis further quantified the\r expression of eNOS gene. Mechanical stretch also increased constitutive NOS activity and NO\r production. Our results indicate that mechanical stretch induces eNOS gene expression thus increases\r constitutive NOS activity and NO production in cardiomyocytes.
「金」枝「玉」葉—金奈米與葉綠素的交互作用
本實驗在探討,當金奈米粒子和植物中的葉綠素產生鍵結作用力時,能量轉移的結果是否能幫助葉綠素激發電子。經由兩者混合後光譜的變化,發現兩者之間發生能量轉移。為探討此轉移現象和濃度的關係,我們將大小不同的金奈米和不同毫升數的葉綠素作用,並將其結果和金奈米與葉綠素的吸收強度和作比較,使用正規化的計算方法算出比值,由此看出兩者之間能量轉移的效率。當金顆粒約大於30nm時,正規化的數值隨的葉綠素濃度的增加而變大;而當金奈米顆粒約小於30nm時,則隨著葉綠素的增加而變小。Much attention is currently focused on chromophoric molecules because they can not only mimic natural antenna systems but also exhibit unique optical and physical properties. Chlorophyll , produced by extracting from green leaves, has electrostatic interactions with Au nanoparticles through carboxyl groups. Herein, we report the charge transfer between chlorophyll and Au nanoparticles using UV-vis electronic absorption spectroscopy. The efficiency of charge transfer from chlorophyll to Au nanoparticles was estimated by the normalization of Q-ban absorption intensity. From the observation of absorption intensity versus concentration of chlorophyll curves, we find that the efficiency of charge transfer is increased while the size of Au-particle is larger than 30nm, but decreased while the size smaller than 30nm.
大氣層厚度光學測量法之研究及創新
這個專題研究的目的是要發展出一套簡單可靠的方法和廉價自製的器材,在地面上即能有效估測大氣層的厚度。我們小組研究光學中雷氏(Rayleigh)散射的原理,針對空氣分子對光線散射作用和特定方向之偏極效應,利用一已知散射長度之路徑,測量其偏極光的強度,同時比對由大氣層散射而來,在同一偏極面上的散射光強度,即能估算大氣層的厚度,方法簡單新穎,自製器材經實際測量和改進,有發展和推廣的價值。\r The main idea of the experiment is to set a system in order to effectively estimate the thickness of the atmosphere. On the theory of “Rayleigh Scattering” (small air molecules sizing about 10-4μm), we developed an equipment that has two tubes. The tubes lead the scattered lights from two paths. One is called “air light” scattered in the ground air, and the other “sky light” is scattered in the sky and reflected by a beam splitter. The two paths are on the same plane; the scattered lights are perpendicular to the direction of sunlight and 100% polarized. We could adjust and measure the distance “d” of the air light path. We simultaneously observe and compare the intensity of the lights from the two paths with the electronic instrument made by ourselves. By using the known distance “d” and the reflection “x” of the beam splitter, we can calculate the thickness of the atmosphere. The experiment is simple, novel and easy to do in an extensive field at school. Researchers don’t have to use a bloom, radar or satellite to discover the atmosphere, but you could use a simple equipment to observe the features of it.