Interaction of the unsaturated sulfones with azinium ylides
1. Introduction In Japan the energy self-efficiency is very low: only 6%. Hydrogen (H2) has been expected as a new and alternative energy source to imported one, such as petroleum resources. Now hydrogen energy comes into the practical use in the field of the fuel cell. Hydrogen must be extracted from other sources, for example, water, fossil fuel, and so on. Hydrogen is obtained from water by using electronic or thermal or photo energy in most cases, whereas it is well-known that hydrogen is given by the oxidation reaction of silicon in alkaline aqueous solution: Si + 2OH- + H2O → SiO32- + 2H2 Free silicon (Si) is not only used in the steel refining, aluminum-casting in the field of fine chemical industries but also is used as a material in semiconductor electronics. However, a lot of used silicon is thrown away as a waste, being not reused and recycled. In this study we try to apply a waste silicon to obtain hydrogen based on the above reaction. The purpose of the study is to develop a safe and convenient manufacturing method to generate hydrogen for an energy source of the fuel cell.
Prototyping a Compact Multi-Format Optical Transmitter for Next Generation Regional and Long Haul Terabit Networks
The last two decades have seen 60% annual growth rate (AGR) in the global IP traffic and it is expected that the AGR will keep the exponential growth in the next five years. Recent advances in digital signal processing enabled the implementation of the dual polarization (DP) optical coherent digital receivers, which substantially improved their performance. The goal of this research is to develop a prototype of a compact superchannel flexible DP M-ary quadrature amplitude modulation (MQAM) optical transmitter and demonstrate its reconfigurability to accommodate baud rates ranging from 8-32 Gbaud∕s to achieve 1 Tb/s and beyond using the same hardware. The research work consists of three phases; Phase I is the study of transmitter electrical and optical parts; Phase II investigates the potential configurations for frequency comb generator circuit; Phase III deals with the superchannel experimental prototype. The results obtained so far are pertaining to phase I and phase II with some preliminary experimental validation pertaining to phase III. The experimental results show that the measured component characteristics are matched with the components specifications data sheets. Additionally, the designed frequency comb generator was able to create up to 9 optical subcarriers with flat gain of 0.5 dB amplitude. Transmission over optical subcarriers has been attempted using standard optical transmitter. These results show promise towards the generation of a variable data rate up to 1Tb∕s. IEEE and ITU-T standardization effort considered these data rates to appear around 2017, and are intended for Next Generation Regional/Long-haul Networks.
Remedies Recovered from Roof Top Resources
Moss from a roof top was used to treat ear infections in my grandfather’s village. This remedy sparked my curiosity and so I began researching. I was bewildered to discover that the resistance to antibiotics has been labelled as a “Catastrophic Threat” and has been ranked in the same category as terrorism and climate change. Governments globally are urging scientists to identify and produce new antibiotics and reassess novel approaches1. This project aims to evaluate two objectives through the use of several integrated technologies and modified methods: (a) To determine if the extracts, solutions and raw materials derived from Heart wood portion of Picea glauca, Populus tremuloides, Salix spp, Betula papyrifera, Pinus contorta, Quercus alba, Thuja occidentalis, Climacium dendroides, Dicranum fuscescens and Kieselgur, will inhibit the growth of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, and Escherichia coli. (b) To scientifically reassess my grandfather’s traditional method of treating ear infections using roof moss. The Heartwood portion of each tree was removed using a hammer and mallet. The Heartwood was then burnt to derive the ash and a miter saw was used to make sawdust. The moss was collected, dried and labelled. A Methanol Extraction was performed on all saw dust samples and moss using a Soxhlet Extractor for 24 hours. The ash solutions were diluted, filtered, and neutralized to pH 7. The solvents were evaporated in a Rotary evaporator and the residual material was stored in round bottom flasks. The Kirby Bauer method was modified and a Well Infusion method was devised for the biological assay. The Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, and Escherichia coli were plated using a 0.5 McFarland Standard. Paper filter discs containing 20uL of each extract solution and raw material were precisely placed onto the inoculated plates and incubated for 24 hours. The preliminary results were initially unfavourable, as data could only be collected and analysed for one species; Thuja occidentalis (White Cedar). However, these results were extremely encouraging when the zones of inhibition were measured and analyzed. Confidence Intervals were calculated at 95% and the T-Tests were calculated at a 0.05 alpha level, which indicated significance when compared to the control. The Chi Square values were greater than the critical value of 7.8 and therefore the thorough statistical analysis indicates that the results were not due to chance alone. Literature has indicated that certain components of trees do indeed have antibacterial properties, however there is very limited research specific to the Heartwood portion. Furthermore, I discovered that the Heartwood portion of the White Cedar tree does have certain antibacterial properties that definitely justify further testing. In addition, a combination of examining my grandfather’s possessions and analyzing present data, I can confidently support my grandfather’s traditional method. In conclusion, the use of the Heartwood portion of the White Cedar to combat bacterial infection warrants further exploration. Remedies Recovered from Roof Top Resources may be the solution to this catastrophic threat.
Beets Revolution
There is currently an interest in developing supercapacitors as the booming of smartphones and other mobile electric devices. Despite offering key performance advantages, many capacitors pose significant environmental hazards once disposed. They often contain fluorine, sulfur, toxic transition metal and cyanide groups, which are harmful if discarded by using conventional landfill or incineration methods. The objective of this project is to find an environmentally benign alternative for building various key components of supercapacitors structures. From the electrolyte, carbon substrate and materials corresponding for Faradic reaction, all the materials were devised from renewable biomass. In our research, two novel designs of betanin/sulfonated carbon supercapacitor and quinone/sulfonated carbon supercapacitor were invented. Betanin and quinone, extracted from beets and Sencha, was preloaded on the sulfonated carbon nanosphere as the composite. While sulfonated carbon nanosphere were fabricated by hydrothermal synthesis of renewable biomaterial, followed by surface functionalization - sulfonation for increasing the loading capacity of nanoparticle. Nanostructured morphology and surface functional groups were examined and confirmed by SEM and IR spectroscopy. Specific capacitance can be boosted up through optimizing the particle size, morphology and surface polarity of carbon substrate and the type of electrolyte. From the experimental result, it is believed that the nano-architecture, with active functional groups, of carbon nanosphere enables the efficient charge transport and electrode stability, allowing the composite with high capacitance (94–209 F g–1 at a current density ranging from 1 to 4 mA cm–2), high capacitance retention of over 90% after over 20,000 cycles respectively, and over a wide range of temperature. Superior electrochemical performance of both betanin/sulfonated and quinone/sulfonated carbon supercapacitor can be attributed to the large accessible surface area of the porous structure, low interfacial resistance and its structural stability. It shows that they have relatively higher tolerant towards heat and extreme pH mediums. The green electrochemical capacitor exhibits a promising capacitive performance of 209 F g–1 with high capacitance retention of over 90%, opening up new possibilities for the production of environmental friendly, cost efficient and lightweight energy storage system using renewable biomass as the basic building materials without harming the environment.