全國中小學科展

一等獎

台灣和東亞地區的氣候變遷

由人類活動造成的溫室效應可能導致地球溫度升高,聖嬰現象加劇等現象與災害,本文利用個氣候中心發展出的模式,推估台灣和東亞地區未來氣候變遷的情況,我們發現當大氣中的二氧化碳濃度增加為現在的1.9倍時,台灣地區的年平均溫度將升高0.85-2.50度C而東亞地區將會升高1.46-4.07度C,在同條件下個模式的平均推估量也顯示,台灣地區將每天增加0.10公厘的降水,而東亞地區每天將增加0.08公哩,我們希望這個研究結果可以做為其他相關研究的基礎,使大家提早因應未來氣候變遷所可能引發的種種變化;Greenhouse effect, incurred mainly by human activities may result in lots of phenomenon and damages such as the increasing of the world's average temperature and he aggravation f the "ElNino" effect. In this research, we simulate future metrological values by employing several simulation modes developed by different climate centers and predict future climate changes in Taiwan and East Asia area. We found that when the concentration of carbon dioxide exceeds 1.9 times than current value, the estimated range of the increased year-average temperature are0.85-2.5℃ and 1.46-4.07℃ for Taiwan and East Asia, respectively. Under the same condition, the ensemble mean reveals that the precipitation raises will be 0.1 and 0.08mm per day, for Taiwan and East Asia respectively. We hope our work can be the foundation of other related researches, and all the researches together can help for coping with possible damages caused by future climate changes.

Fenorhythmes Of Yakut Taiga. The Calendar Of The Nature Of Olekminsk Reserve.

“Natural phenological per iodization of a year is called nature calendar…”\r The role of rivers in nature and man’s life is great. They connect people and cultures, form climate, give life to the thousands of living beings. \r In the tasks of researches there were:\r 1. To determine the peculiarities of seasonal dynamics of alive and inanimate nature of Olekminsk reserve;\r 2. To find out (to reveal) the peculiarities of phenological seasons of the territory of Olekminsk reserve. \r _ To determine of phenoindicators which are separate from phenological seasons \r _ To establish the middle dates of the advance of phenological phenomena \r _ To determine the duration of phenological seasons of a year.\r According to the general nature of plants the territory Olekma-Amga interriver refers to the provincial of pine-needles taiga zone, to Verkhne-Lensky flora area. Predominating part of the plants of the reserve relates to boreal types. The flora of the superior plants of Olekminsk reserve includes 654 types. The fauna of area is presented by 40 types of mammals from 45 living in the south of Yakutia, 187 types of birds, 2 types of amphibians and 2 types of reptiles.\r Besides, phenological researches were conducted on the testing area of school ecological control and during arranging of field ecological schools since 2000 till 2010. \r In all 169 phenological phenomena were analyzed from different phenological seasons of year for the last seven years. The gross amount of analyzed information composed 4000 information units.\r Results and conclusions:\r 1. The peculiarities of the seasonal changes of natural complexes were determined for the first time for south of Yakutia on the example of the territory of Olekminsk reserve. The calendar of the nature of Olekminsk reserve was composed. The analysis of phenological observations allowed establishing the row of phenoindicators, with the help of which we can determine advance of that or either phenological stage, as well as the disposition of current vegetative period can be forecasted. The information maybe used in organizing of the measures of nature protection, struggle with pests and the diseases of useful plants, parasite and tranmissive diseases of man and home cattle.\r 2. Geographic position and climatic peculiarities of territory form the peculiarity of seasonal rhythms of Olekminsk’ reserve’s nature.\r 3. All components of landscape in its seasonal changes tightly are connected with each other with causative-investigation ties having formed the definite complex of characteristic phenomena per the stage of seasonal development. \r 4. The carried out analysis of the primary materials of the Annals of the nature of the reserve and information from the field of ecological schools for seven years since 2001 till 2007 allowed detecting the peculiarities of phenoclimatic seasons of the territory of Olekminsk reserve.\r 5. Phenological and temperature outsets of phenological stages were determined.\r 6. Intervals and average of many years dates which are characteristic for phenological phenomena are determined.\r 7. The calendar of the nature of Olekminsk reserve was made on the basis of the processed information.

Bio-Conversion of TiO2/UV System Pretreated Rice Straw to Ethanol

1. Purpose of the research :\r One of the greatest challenges for 21st century society is to meet the growing energy demand for transportation, heating and industrial processes. U.S. and Brazil are currently converting corn starch and sugarcane juice into ethanol; however, these are edible products. To stop global warming and poverty, we tried to determine to develop new pretreatment method to produce biofuel using non-edible parts of agricultural products.\r 2. Procedures :\r For our research purpose, we conducted ‘Preparation of Rice straw - Powder’, ‘Pretreatment Method of Rice Straw and Statistical Optimization Using Response Surface Methodology’, ‘Enzymatic Hydrolysis for Saccharification of Pre-treated Rice Straw’, ‘Analyses of Pretreatment Efficiency and Production of Glucose and Xylose Using HPLC & TLC’, ‘Ethanol Fermentation and Recovery’, ‘Strain Improvement for Pichia’.\r 3. Data :\r For the first time, rice straw was pretreated in a novel manner using hypochlorite-hydrogen peroxide (Ox-B) solution. The optimum pretreatment condition was analyzed by response surface methodology and the pretreated rice straw was hydrolyzed using two kinds of enzymes. Following hydrolysis, Saccharomyces cerevisiae and Pichia stipitis were inoculated for ethanol production. The optimum condition was 60 min pretreatment using Ox-B solution containing 0.6% hypochlorite and 25% hydrogen peroxide for 1 g rice straw in 240 ml total reaction volume. The Ox-B solution treatment was an essential step for efficient hemicelluloase hydrolysis. Under these conditions, 406.8 mg glucose and 224.0 mg xylose were obtained from 1 g rice straw. The structural change of rice straw after pretreatment and enzyme hydrolysis was examined by scanning electron microscopy. With the 10% initial sugar concentration, the final ethanol concentration was about 3.46%, which is 90.5 % of stoichiometric and fermentation efficiency yield.\r 4. Conclusions :\r Rice straw was pretreated in a novel mean by using an Ox-B solution broadly used in potable water treatment. Pretreatment modified the structures of lignocelluloses. The Ox-B solution treatment was an essential step for efficient hemicelluloase hydrolysis. Pretreatment modified the structures of cell wall. Further optimization studies of the fermentation process and strain improvement research (for derepressed mutant) are in progress. In the future, I hope to see cultivators to move by the ethanol produced from rice straw and agricultural wastes.

以數位像素分析法探討兩棲類變色行為之研究

本研究是以數位科技改良生物實驗上的傳統比色法,並探討中國樹蟾及台北樹蛙的變色行為。有些兩棲類有變色行為,這是眾所皆知的現象,過去一向採用比色法判斷生物體的體色變化;然而,以人眼去測定色差,會有相當大的主觀誤差。本研究及是探討以數位科技量化並比較實驗對象的變色情形。在研究過程中,用電腦量化數位相機所拍攝的影像,以像素的方式呈現出來,得以取的準確且客觀的實驗數據,並加以解析,也經由此一實驗方式,交叉比較中國樹蟾及台北樹蛙在不同環境和不同時間下的變色情形。結果顯示:樹蛙變色和環境顏色及時間有密切關係,且在短時間內以數位量化的方式解析其變色行為的方法極為可行。The purpose of this study is to investigate the color variation behavior of tree frogs using an image processing technology. It is known that some of the amphibians have the ability to change their skin color under different circumstances. In the past, a conventional “color comparison” method was frequently used whenever it comes to analyzing the color variation of organisms. However, it is realized that evaluation of color difference by human eyes is extremely unreliable. An advanced image processing technology is thus suggested to quantify the variation of skin color of tree frogs under different conditions in this experiment. Accurate quantification can be determined from the pixel number of exhibited digital images during the experiment. The color variation of different species of frogs (Hyla chinensis & Rhacophorus taipeianus) is also compared under different parameters. It is found that the color variation of tree frogs is closely related to the color of back ground as well as time. The proposed digital quantification technique has been successfully demonstrated to be an effective method for analyzing the color variation of frogs within a very short time.

果蠅單眼的發育調控基因之篩選

在果蠅成蟲的頭頂上方三顆可以感光的單眼(ocelli),其構造和複眼有顯著的差異,但單眼及複眼在果蠅幼蟲時期,皆從一片特別的組織eye-antenna disc發育而來。而且目前已知會表現在單眼的一些特定基因,也是會調控複眼發育的基因,如sine oculis (so),eyes absent (eya) 等。但到底是哪些特定的基因決定了單眼與複眼的差異,目前並不是很清楚,因此我想探討果蠅單眼細胞在發育過程中,有哪些特定的基因會調控果蠅單眼的生成與變化。 本實驗主要是利用果蠅研究上常使用的基因表現系統(UAS-GAL4 system)進行研究,我們挑選許多和複眼發育相關的基因、胚胎生長發育相關基因進行表現,觀察其單眼性狀有無變化,篩選出會影響單眼發育的相關基因後,再進一步研究此基因的可能作用機制。 從實驗的結果中發現當表現ras及Egfr的顯性抑制型 (rasDN, EgfrDN)時,在掃描式電子顯微鏡下可觀察到三顆單眼會明顯變小。而在幼蟲時期的eye-antenna disc,利用免疫螢光染色以及雷射共軛焦顯微鏡觀察到當表現rasDN、EgfrDN時, 單眼標記基因(marker gene) Eyes absent (Eya)表現的強度顯著降低。再加上已知ras為Egfr的下游基因,綜合這些結果,我們認為Egfr-Ras 以及其下游基因的訊號傳遞對於單眼發育是很重要的。 另外在視網膜電流圖(electroretinogram)的實驗當中,發現Egfr, ras訊息傳遞被抑制的果蠅單眼在對光線刺激的反應強度比起正常的果蠅下降許多,因此可推論Egfr, ras的訊息傳遞不僅會影響單眼的發育,也會影響單眼的正常感光的功能。

Molecular and Cellular Responses under Hypoxic Stress among Rice Cultivars with Different Flooding T

全球暖化造成水災頻繁,嚴重威脅植物生存。看似耐淹水的水稻,在完全淹水下亦有其生存危機。水稻FR13A 因耐水性極佳而常用於分子育種,IR64 產量高卻不耐水。是那些特質使稻種間有不同耐水機制?我們觀察其幼苗淹水24 小時後生長情形、通氣組織 (aerenchyma) 變化及應用即時反轉錄聚合?鏈反應 (real time RT-PCR),研究酒精醱酵的主要蛋白質:乙醇脫氫? (alcohol dehydrogenase, ADH1, 2) 及丙酮酸脫羧? (pyruvate decarboxylase, PDC2) 基因之表現量。兩種水稻的胚鞘及根都因淹水減緩生長,以FR13A 減緩最明顯。通氣組織在淹水期間都有增加,FR13A 中的形成近似於對照組,IR64 則明顯較差。FR13A 中ADH1 及ADH2 在淹水一小時後迅速增加60 至100 倍,IR64 僅增加10 至20 倍。PDC2 在IR64 中表現量的增加幅度較大,但最大值仍小於FR13A 之基礎表現量。由此可知,FR13A 在完全淹水時成長減緩而原有通氣組織則持續生長,且酒精醱酵中的基因有獨特誘導反應,因此耐水性較佳。藉由此研究揭開水稻細胞及分子生物學上的耐水反應策略,將可更精準地改良稻作使其對抗淹水逆境,解決未來因環境造成的糧食危機。Global warming increases the frequency of flooding, which drastically reduces the growth and survival of plants. Although rice (Oryza sativa) appears well-adapted to flooding of roots as it is often farmed in paddies, problems arise when the whole plant is submerged in water. I am interested in the structural and molecular responses that result in different submergence tolerances in rice cultivars. Indica rice FR13A is submergence-tolerant and frequently used in molecular breeding for this trait, while IR64 is a high-yield but submergence-intolerant cultivar. In this study, I monitored the growth rate, aerenchyma formation, and gene expressions of the carbohydrate metabolism in FR13A and IR64 seedlings subjected to submergence for 24 hours, by means of real time RT-PCR and microarray. FR13A had prominently inhibited coleoptile growth and sustained levels of aerenchyma formation whereas IR64 did not. The mRNA levels of alcohol dehydrogenase 1 (ADH1) in FR13A was induced prominently, while ADH2 was induced in IR64 during early hours of submergence. The induction of pyruvate decarboxylase 2 in FR13A was stronger than IR64. The expression of sucrose synthase was similar in both strains. Expressions of the genes involved in anaerobic carbohydrate metabolism were also studied by analyses of microarray data. My findings demonstrate that elongation quiescence, persistent aerenchyma formation and shifts in anaerobic carbohydrate metabolism gene expressions are beneficial strategies of FR13A towards submergence. Through elucidating the molecular basis of coordinating submergence tolerance genes as this study provided, it will be possible to discover multiple traits associated; hence crop improvement for flooding tolerance could be achieved.

倍位元灰度影像產生器

本研究設計一新型的影像投射系統,可將影像顯示的灰度位元加倍,例如,顯示面板只需用4位元,即可顯示8位元的影像;亦能充分利用光路光源,增加光源使用率。此系統使用兩片相同灰度位元的顯示面板,此兩面板所顯示的影像經過灰度的重新處理,且各經由不同光源強度比值的光路合成後,其灰度分佈將可增為原來的平方倍。經模擬與實驗顯示,此種系統很輕易就能獲得預期目標。無論使用穿透式或反射式皆可應用於目前單片液晶面板之投影系統中;未來可望利用網板來表現灰度,應用於紅外線景物投射系統中,作為紅外線影像式尋標器靜態模擬時所需的高強度動態範圍與高解析度之影像產生器。In this study, a novel image generator utilized in a projecting system has been proposed; it can double the bits of gray-level for image display and enhance the efficiency of illumination of lamp in the optical path. With this system, a 4-bit display panel can achieve an 8-bit image display. Two display panels with same gray-level bits is adopted, images on them will be processed, and then go through different path with a proper intensity ratio. The gray level distribution of image displayed which the two images combined afterward, will be the square of that of original one. The results of simulations and experiments have approved to meet the requirements. No matter transmitting or reflective types can be applied to current projecting systems with single LCD panel. It is expected that a halftone-gray-level pattern will be suitable for this system to form an infrared scene projector, and to act as an image generator with high dynamic range and resolution for static simulation of infrared imaging seeker.

均相沉澱法製備CZA 觸媒之探討

本研究以均相沉澱法合成多成分的銅鋅鋁觸媒系統,並嘗試克服傳統共沉澱法的不均勻性且提高比表面積,過程中我們利用改變尿素濃度、水添加量、反應溫度與時間等四種變因成功合成出具有高活性的銅鋅鋁觸媒。研究得知最佳的合成條件為尿素3M 並添加三倍體積的水,在95°C 下反應2 小時。與傳統觸媒相比,均相反應合成的銅鋅鋁觸媒除了有較小的粒徑外,其還原溫度也較低,顯示較佳的觸媒活性。而在250°C 甲醇重組的製氫反應條件下,均相反應合成的銅鋅鋁觸媒也有較高的甲醇轉化效率、氫氣產生率以及CO2 的選擇率,而添加鈰與鋯可更進一步使觸媒活性再提升。未來除可利用此合成方法合成均勻性佳的多成份材料,亦可應用此高效能觸媒進行甲醇重組反應以產生氫氣提供燃料電池使用。; Multi-composition Cu-Zn-Al catalyst system was synthesized by homogeneous precipitation method. This method was anticipated to improve the homogeneity of metal mixing and to increase the surface area of catalyst derived by conventional co-precipitation method. In the research, we successfully synthesized Cu-Zn-Al catalyst with high activity by adjusting four experimental parameters -- urea concentration, water amount, reaction temperature and reaction time. The better catalyst can be obtained under urea concentration of 3M diluted by 3 times water, and the kinetics conditions of 95°C and 2h. Compared with the co-precipitation method, homogeneous precipitation method derived Cu-Zn-Al catalyst performed higher methanol conversion, hydrogen production rate and CO2selectivity under methanol reforming reaction at 250°C. Modifying the support by addition of Ce and Zr might further improve the activity of the catalyst. In the future, not only can this method apply on synthesizing other multi-composition materials with high homogeneity, but also the high performance catalyst can be used to do methanol reforming reaction in order to supply hydrogen on fuel cell.

磁性流體可調性折射率特性之研究與應用

磁性流體(magnetic fluids)是一種含有磁性奈米粒子的液體,當磁場外加於磁性流體時,流體中各磁性奈米粒子的磁矩會沿外加磁場方向排列,而導致粒子間相互吸引,形成較大的磁性叢集,即所謂的磁鍊。當外加磁場增強,該磁鍊數會變多,並使磁性流體的折射率產生變化。磁性流體的折射率變化會隨外加磁場之變大而增大。本研究除探討磁性流體折射率受外加磁場控制的變化情形及其物理原由外,並進一步運用此特性研發可調性光纖「光調制器」 ,以探討磁性流體可調性折射率應用在光電元件上的可行性。A magnetic fluid is one kind of colloids which contain magnetic nano-particles. Under an external magnetic field, the magnetic moment of nano-particles is aligned along the direction of the external magnetic field. This leads to the agglomeration of magnetic particles and to form magnetic clusters under an external magnetic field. With the formation of the magnetic clusters, the refractive index of magnetic fluid is varied. The refractive index of magnetic fluid was found to increase under a higher magnetic field. In this work, In addition to investigating in detail the behavior of the field-dependent refractive index of the magnetic fluid, we also explore the relevant physical origins. Furthermore, the feasibility of developing fiber-optical modulators by utilizing the tunable refractive index of magnetic fluids is discussed.

氣流式薄膜測厚儀

醫學上的植皮手術成功率受皮膚厚度影響,皮膚愈薄癒合速度愈快,其中以取皮厚度介於0.05mm 到0.1mm 為佳。在實驗量測時,需要經過一連串繁複的薄皮標本製作,再放到光學顯微鏡下測量,這種厚度測量方式不但耗時,又因嚴重損毀皮膚而不精確。由於使用螺旋測微器做接觸式測量會有形變的問題,因此我們想做間接接觸式的測量,所以採用氣體為媒介,做非破壞性檢測膜厚,這對於在皮膚上的施力遠小於螺旋測微器或是接觸式膜厚計。我們設計一套三頭連管線,使用空氣為媒介,儀器運作原理為在管線一端針頭非常靠近被測物時,所流出的氣體會受到被測物阻礙產生反壓使管線內的壓力上升,導致連通於另一管路的氣泡指示計壓出氣泡,當氣泡為最大氣泡時(半球形)視為達到平衡狀態。實驗時先用已知厚度且不變形的蓋玻片來當作被測物,此時可以算出針尖至蓋玻片的實際距離做為參考值。在量測軟性薄膜時,設計上採用兩側雙針頭靠近軟性被測薄膜兩側以達到氣流氣泡平衡,這時使用螺旋測微器讀取兩針尖距離,減去已知參考值的兩倍距離,即可測出未形變的軟物質厚度。本研究開發一套能測量軟性薄膜的厚度裝置,尤其在皮膚厚度測定上,不但不會直接接觸標本造成損毀,並且能夠快速地測量出厚度值,此為本儀器的最大特色。The thickness of skin graft has deterministic influences on the success of graft surgery. Experimental measurements of skin graft thickness involve complicated specimen preparation processes followed by optical microscopic examination, which are time-consuming and may incur inaccuracy due to possible damage. Here we propose a novel method using air as the media to avoid direct contact of the measured object. The physical operation relies on the following principles: When the tip of a needle connecting to a catheter system is placed close to the object to be measured, the air pumped forward from the catheter system becomes impeded by the object. The resulting backflow pressure opposing the air flow causes an increase in air pressure within the catheter and inflates the bubble connected at the other end. Balance at maximal surface tension is attained when the bubble reaches its maximum volume in hemispherical shape. In practice, a two-needle design was used, each approaching simultaneously from each side of the object. A micrometer was then used to read the distance between the two needle tips, from which the film thickness was derived, subtracting the thickness of the air layer pre-calibrated using cover glass with known thickness. The system implemented was capable of measuring thickness on soft thin films with an accuracy of ± 0.001mm. In addition to rapid measurements with high accuracy, since the pressure exerted on the skin graft is much less than in conventional calipers requiring direct contact, our method has the unique non-distorted and non-destructive advantages.