利用硫醇分子合成金奈米團簇應用於檢測自來水及游泳池水中次氯酸根
隨著大眾對於衛生要求的上升,許多抗菌及消毒成分被廣泛應用於水質處理中,其中次氯酸作為消毒殺菌劑大量使用於泳池及自來水的水質淨化中,然而現行標準方法測定水中有效氯所使用具危害的毒化物且步驟繁雜不利普及民生使用,發展簡便快速且靈敏的偵測方法勢在必行。本研究利用牛血清白蛋白(Bovine serum albumin, BSA)、不同的硫醇分子及金離子合成具螢光特性之硫醇修飾金奈米團簇 (Thiol ligand assists BSA capped gold nanoclusters, BSA/RSH-Au NCs),探討添加不同硫醇分子對所合成之金奈米團簇於不同pH值及常見離子對螢光強度之影響,並利用具有最佳螢光穩定性之2-巰基苯甲酸修飾金奈米團簇(Thiosalicylic acid assists BSA capped gold nanoclusters, BSA/TA-Au NCs),透析後進行次氯酸根檢測,其檢測線性範圍為0.98μM-1000μM,涵蓋法規規定游泳池水及自來水中次氯酸根之容許殘留濃度,最後此方法成功於游泳池水及自來水基質中檢測次氯酸根,分析樣品的回收率介於94.4%-95.6%。此外,在紙上添加金奈米團簇,並加入不同濃度的次氯酸根,觀察其螢光強度的變化,期望此方法未來應用於快篩試紙塗布材料快速檢測水質中次氯酸根濃度。
Designing Multifunctional Intelligent Autonomous Underwater Remote Operating Vehicle to perform “Search and Rescue” in the event of extreme weather flooding condition
This underwater remote operating vehicle (ROV) is designed with and without tethered operation. The operator can control the ROV from the real time first-person view in graphical user interface combined with sonar and object detection function when the tether is attached to perform search and rescue. The control tether with fiber optic lighting cable establishes a guided link medium between the possible search victim location and the rescue team. When the tether is detached, rapid deployment by a predefined set of instruction to achieve further operation range. The intelligent technologies of signal processing were used for object recognition, collision detection and sonar scanning data to enhance underwater operation. Autonomous driving is based on software development with limited capability to run in unrestricted open areas. We have achieved the design intent and confirmed the performance data in the laboratory boundary conditions.
Microfossil association of the Štíty locality
My thesis focuses on studying Cretaceous microfossil specimens from the excavation of former brickworks in Štíty, especially foraminifera. In the theoretical part, I have covered the structure of the Bohemian Cretaceous Basin area, especially Bystřice Lithofacial Development. I have also processed previous paleontological researches from the locality. Emphasis was placed on field research and subsequently on laboratory research of the site. I have examined the present state of the location and gathered samples of silt clay containing a wide variety of fossils. I have acquired the microfossils, determined them, and ordered them systematically. The most important part of the thesis is the systematic and palaeoecological processing of the collection of microfossils from the locality. The thesis continues the research of the last year of SOČ, where I have gathered a collection of fossil macrofauna, flora, and ichnofauna. My collection is supplemented mainly by benthic and planktonic foraminifers. I have confirmed that the specimens found are typical representatives of marine fauna belonging to the Upper Cretaceous Coniacian. The paleoecological characteristics of the locality correspond to a nutrient-rich shallow-water environment, occasionally disturbed by storm waves.