Beets Revolution
There is currently an interest in developing supercapacitors as the booming of smartphones and other mobile electric devices. Despite offering key performance advantages, many capacitors pose significant environmental hazards once disposed. They often contain fluorine, sulfur, toxic transition metal and cyanide groups, which are harmful if discarded by using conventional landfill or incineration methods. The objective of this project is to find an environmentally benign alternative for building various key components of supercapacitors structures. From the electrolyte, carbon substrate and materials corresponding for Faradic reaction, all the materials were devised from renewable biomass. In our research, two novel designs of betanin/sulfonated carbon supercapacitor and quinone/sulfonated carbon supercapacitor were invented. Betanin and quinone, extracted from beets and Sencha, was preloaded on the sulfonated carbon nanosphere as the composite. While sulfonated carbon nanosphere were fabricated by hydrothermal synthesis of renewable biomaterial, followed by surface functionalization - sulfonation for increasing the loading capacity of nanoparticle. Nanostructured morphology and surface functional groups were examined and confirmed by SEM and IR spectroscopy. Specific capacitance can be boosted up through optimizing the particle size, morphology and surface polarity of carbon substrate and the type of electrolyte. From the experimental result, it is believed that the nano-architecture, with active functional groups, of carbon nanosphere enables the efficient charge transport and electrode stability, allowing the composite with high capacitance (94–209 F g–1 at a current density ranging from 1 to 4 mA cm–2), high capacitance retention of over 90% after over 20,000 cycles respectively, and over a wide range of temperature. Superior electrochemical performance of both betanin/sulfonated and quinone/sulfonated carbon supercapacitor can be attributed to the large accessible surface area of the porous structure, low interfacial resistance and its structural stability. It shows that they have relatively higher tolerant towards heat and extreme pH mediums. The green electrochemical capacitor exhibits a promising capacitive performance of 209 F g–1 with high capacitance retention of over 90%, opening up new possibilities for the production of environmental friendly, cost efficient and lightweight energy storage system using renewable biomass as the basic building materials without harming the environment.
Lunar Tide Contribution to Thermosphere Weather
Internet search technology is a pervasively used utility that relies on techniques from the _eld of spectral graph theory. We present a novel spectral approach to investigate an existing problem: the critical group of the line graph has been characterized for regular nonbipartite graphs, but the general regular bipartite case remains open. Because of the ine_ectiveness of previous techniques in regular bipartite graphs, our approach provides a new perspective and aims to obtain the relationship between the spectra of the Laplacians of the graph G and its line graph bG. We obtain a theorem for the spectra of all regular bipartite graphs and demonstrate its e_ectiveness by completely characterizing the previously unknown critical group for a particular class of regular bipartite graphs, the incidence graphs of _nite projective planes with square order. This critical group is found to be Z2_(Z2q+2)q31_(Zq2+q+1)q2+q1; where q is the order of the _nite projective plane.
Findings of new oscillations in BR reaction
The Briggs Rauscher reaction, i. e., BR reaction, which is one of the oscillation reactions, produces iodide ion and iodine repeatedly. Continual color changes of the solution from colorless to deep blue, and vice versa, are observed during the reaction due to the so-called “iodine test” reaction. In this work, we studied the effects of the presence of the redox active indicators on the oscillation behavior of the BR reaction. To the reaction mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch, which are used for the general BR reaction as added a redox active reagent (indicator). Then, the changes in color and voltage of the reaction solution were recorded by a photosensor of the LEGO MINDSTORMS and a voltmeter using Pt electrodes. Under general reaction conditions, the oscillation reaction continued for ca. 5 minutes, including 18 times of oscillations. When an indicator, such as BTB, was added instead of starch to the reaction solution, splits of the voltage wave were observed, which should be a kind of new oscillation. Moreover, we found that the addition of K3[Fe(CN)6], which exhibits high redox activity, in the reaction solution instead of starch made the life-time and the numbers of the oscillation in the reaction greater by 3 times (14 min.) in time and more than 4 times (81 times) in the frequency. It’s also a kind of new oscillation. These results suggested that the oxidation-reduction reactions by the addition of ferricyanate ion effectively promotes the redox process of iodine and iodide ion. The experiments we wrote above were conducted without starch. Thus, as a reference, we conducted the same experiments under the presence of starch and got interesting results. We also studied the effects of K4[Fe(CN)6], suggeting that not only redox reaction between ferricyanide and ferrocyanide ion, but also the redox reaction with BR solution should occur in these reactions.
Improving Spinal Fusions: Redesigning the Pedicle Probe to Prevent Vertebral Breaches
Pedicle probes are medical devices used by surgeons during spinal fusions for patients with conditions such as scoliosis and spinal fractures. The probe creates pilot holes to guide the placement of pedicle screws in vertebrae. The screws are then connected with a metal rod to stabilize the spine. Twenty-nine percent of patients who undergo spinal fusions suffer from vertebral breaches – accidental damage to the spinal cord – which cause complications such as infection, motor defects, and in many cases paralysis. My goal was to make spinal fusions safer by redesigning the pedicle probe to provide surgeons with instantaneous feedback on the probe’s location, enabling them to more accurately place pedicle screws. The pedicle probe I developed takes advantage of the difference in density between the inner cancellous (spongy) bone and the outer cortical (compact) bone found in vertebrae. Cortical bone is avoided by monitoring the cannulation force – the force required to insert the probe. When the probe contacts denser cortical tissue, it warns the user by providing tactile and visual feedback through a vibration motor and an LED. This enables the surgeon to redirect the probe and advance down the optimum path, preventing a possible breach. It proved successful in preventing breaches on lamb vertebrae, which closely resemble human vertebrae. This novel device improves feedback to the surgeon and eliminates the need for costly and potentially harmful ionizing radiation exposure. Furthermore, it does not depend on, or require, any preoperative imaging. The cost of manufacturing the improved probe is less than $42 USD (NT$1297). Results of patent searches for 加拿大, the 美國, and Europe suggest that the redesigned probe is unique in predicting and preventing breaches in spinal fusions based on predetermined force threshold values. The probe is also unique in enabling personalized procedures in spinal fusions for those with complications, through calibrating a control (force) limit based on tissue samples prior to the procedure. Enhancing a surgeon’s ability to determine an appropriate path for pedicle screws through a sensor-enabled probe has the potential to significantly reduce the incidence of vertebral breaches during spinal fusion surgery.
Improving Communication for the Visually Impaired Through an Innovative Arabic Writing System
Visual impairment is a major global health problem. In 2017, WHO estimated that there were 253 million people worldwide with this ailment. According to the journal of the American Medical association, the prevalence of visual impairment in the Saudi population is 9.3%. Learning Braille by families of students with visual impairments remains a major obstacle, which precipitates several communication issues. Moreover, difficulties for the students themselves lie in learning braille with languages that include diacritical marks; consequently, affecting their academic progress. My main objective of this project is to help improving life quality of these individuals, and the focus is to advance their social productivity and adaptation. This was accomplished through creating a new simpler Arabic writing system using geometrical shapes. As a part of this project, fifteen participants with visual impairments were interviewed and tried this new writing system; two of them are adults between 25 and 40 years old while the rest are students from 9 to 17 years old. Additionally, 100 participants with visual impairments completed a survey. The data showed that students learned this system in two hours in comparison with students that mastered braille in a few months. This shows that this system is easier to learn and subsequently saves time and effort. The most important value added to this project is that diacritical marks were combined with the alphabet, thereby considerably reducing book sizes compared to Braille-written books. This project presents a novel system that helps people with visual impairments to increase their confidence and independence.