Quantitative Analysis of Organism Growth Using Fractal Dimension Statistics
Cultures of bacteria were analyzed using fractal geometry and statistics to provide a method for predicting organism growth, paving the way for a better design of treatment drugs. Images of three cultures of isolated Bacillus subtilis were taken at time intervals of two to three hours for eight days. The images were processed using the IDOLON program and quantitatively described using three statistical formulas: fractal dimension D, Renyi dimension and Hausdorff-Besicovitch dimension. The three variables were integrated to compute the maximum of the distribution and were used as coordinates for a 3-dimensional graph f. A 2-dimensional graph g containing the maximum of a distribution under time analysis was also constructed. Topological properties of the graphs, including slope, direction and area were used to determine the interrelationship of the three fractal values. The two graphs, described as φ - : X -? P1 where X is the smooth algebraic assimilation of the four variables under time analysis, was extended using Java. A computer-aided prediction model of the graphs f and g were made which combined the topology of f and g at infinity. The computed fractal values showed the existence of a fractal pattern in the growth of Bacillus subtilis with fractal dimension ranging from 0.900 to 4.000, indicating a linear iteration. This was supported by the values of the Renyi dimension, which showed a horizontal growth pattern of the bacterial cultures, establishing the growth of the bacteria to be inclined to go towards the North East direction. There was consistency in the computed fractal values, maximum of distribution and topographical computations of all three cultures which also indicated the existence of a pattern of growth which could be extended to tinfinity, thereby allowing prediction of the direction and rate of growth of the bacterial colonies. The fractal patterns in the growth of bacteria, in this case Bacillus subtilis, yielded the direction and rate of growth of the bacteria as shown by the analysis of the fractal patterns and statistical values, showing that the growth of harmful organisms can therefore be predicted, making it possible to improve on the design of drugs for the control of perilous cells. By preventing the growth of insidious cells, the potential effects of virulent organisms may be avoided, and treatment may be made more possible.
Investigation of phytoremediative ability of macrophytes and a design of a phytofiltration system for Singapore’s waterways
"Nitrates and phosphates cause eutrophication when present in high concentrations.\r This project aims to employ macrophytes to reduce such macronutrients in water bodies via growth and kinetic studies, which is a unique fusion of methodologies. It also involves a novel design and analysis of several enclosure prototypes to introduce macrophytes into waterways and their effects on the waterway’s ability to convey storm water rapidly away from flood-prone areas.\r Tropical macrophytes (emergent macrophytes Typha angustifolia and Cyperus haspan, submerged macrophytes Hydrilla verticillata and Cabomba aquatica, floating macrophytes Lemna minor) were grown in simulated wastewater with high nitrate and phosphate concentrations. Analysis of the growth and uptake kinetics of the macrophytes showed a correlation between high growth rate and high nitrates and phosphates uptake. C. aquatica had the highest uptake rate for nitrates and phosphates as well as the highest growth rate of 6.11 ± 1.2 % day-1 . The remaining macrophytes were proven to exhibit good phytoremediative properties, with emergent macrophytes C. haspan and T. angustifolia having great affinity (as indicated by a low Km value) for phosphate and nitrate respectively. An analysis of the phytoremediative abilities of each macrophyte was done to provide recommendations for growth in different aquatic areas.\r A total of eight nettings, made from different materials-linen and plastic, and pore sizes were used to design the enclosure prototypes. These enclosures possess a metal skeletal structure for greater stability. Results show that a combination of 2 different nettings provided the best trade-off between ensuring that the macrophytes were contained within the enclosures and minimising the enclosure’s impact on the flow velocity of the waterways. Enclosures could then be attached to existing infrastructure like the float booms as a platform for large scale phytoremediation locally."
Synthesis and Characterization of Starch-Nanosized Calcium Phosphate Composites
Nano-sized calcium phosphate was used in the synthesis of starch-based composite plastics to provide a cheap but sturdier biodegradable alternative to petroleum derived plastics used in film packaging. Nano-sized calcium phosphates were produced from the precipitation reaction of calcium nitrate tetrahydrate (Ca(NO3)2 ‧ 4H2O) and phosphoric acid (H3PO4). The nanoparticles were co-extruded and molded with thermoplastic starch (TPS) at ratios of 0%, 1%, and 5% by mass. Tensile strength and elongation percentage of the resultant composite plastics were tested in three replicates. The results show that there is a significant difference between the tensile strengths of the 0% and 5% calcium phosphate composites at a 5% level of significance. The trend between the composite’s tensile strength and percentage calcium phosphate follows a geometric progression, enabling a projection for the 10% nano-calcium phosphate to have a tensile strength of 10 MPa, the average tensile strength for low-density polyethylene (LDPE). This shows that it is feasible to synthesize a 10% nano-calcium phosphate-TPS plastic that can be a viable substitute for LDPE plastics in film packaging, paving the way for the commercialization of starch-based plastics. The use of biodegradable plastics with improved physical characteristics will lessen consumer dependence on petroleum derived plastics and solve the environmental issues brought about by the use of such plastics.
凸n 邊形等分面積線數量之分布探索
(一) 本研究首先導出ΔABC等分面積線移動所包絡出的曲線方程式,其圖形是由等分面積線段PQ(其中P、Q皆在ΔABC的周界上)的中點所構成,具有3 條曲線段(分別為3 條雙曲線之一部分)的封閉曲線,形成內文所謂的「包絡區」。利用包絡區的區隔,我們找出:1.當P 點在包絡區內,則有3 條等分面積線。2.當P 點在包絡區周界上,則有2 條等分面積線。3.當P 點曲線段的端點或在包絡區外,則有1 條等分面積線。(二) 以三角形的研究當基礎,擴展到凸n 邊形(不包含點對稱圖形),我們發現:等分面積線數量之分布,仍然與包絡區息息相關,且1.凸2m +1邊形最多有2m +1條等分面積線。2.凸2m邊形,必發生內文所謂的「換軌」。因此,最多只有2m ?1條等分面積線。3.包絡曲線所分割出的區域,於相同區域其等分面積線數量相同,且相鄰兩區域數量差兩條。(三) 若凸n邊形有k個「換軌點」,則此n邊形過定點等分面積線至多有n ? k 條。(四) 若凸n 邊形為點對稱圖形(如正偶數邊形、平行四邊形),則所有等分面積線皆過中心點。1) Our study got a curve equation of bisectors of a triangle. When a bisector is moving, we get three curves. They’re constructed by the midpoints of PQ. The three parts of the three curves make a closed curve which we called “the Envelope Area”. We found out:\r 1. When Point P is in the Envelope Area, we can get 3 bisectors. 2. When Point P is on the curves of the Envelope Area, we can get 2 bisectors. 3. When Point P is outside of the Envelope Area, we can get only 1 bisector. 2) Based on our study of triangles, we found that in Convex polygons(not including Point Symmetry Convex polygons), the distribution of bisectors is related to the Envelope Area. 1. We can get at most 2m +1 bisectors in a 2m +1 Convex polygon. 2. We can get at most 2m ?1 bisectors in a 2m Convex polygon, and the bisectors on the curves will “Change the Track”. 3. Envelope curve will divide a Convex polygon into several areas. The same area has the same numbers of bisectors, and the near areas have less or more 2 bisectors. 3) If a Convex polygon has k points to change the track, it will have at most n – k bisectors.\r 4) In a Point Symmetry Convex polygon (ex. Regular 2m convex polygons and parallelograms), all the bisectors will come through the center point.
Development of an ECG-System using AndroidTM and Modified Bluebeatc Hardware
Electrocardiograms are important medical devices used to monitor the cardiac activity of patients over a period of time. Designed to provide convenient monitoring of patients, although most useful, ECG’s however are expensive and usually not portable, limiting its availability and therefore usefulness. Taking advantage of current technological developments, the researchers developed an ECG System with Androidâ„¢ smartphone based monitor, and Bluebeat© ECG Front circuit based electrodes. The system is divided into two, software and hardware interface. The developed software interface code used an Android based Java language which displays the converted ADC values in the LCD. Saving and user friendly features were also included in the smartphone. The hardware interface is composed of the ECG front and the Data Acquisition Module. The ECG front contains the filters and amplifiers that will receive the human cardiac signal. The DAT Module will then receive it with its Gizduino (Arduinoâ„¢ clone) microcontroller which converts the analog signals into ADC values, and finally sends it to the smartphone using Bluetooth© wireless communication. The first phase of data gathering used signal generator and indicates the system’s accuracy and speed. The second phase testing of the study meanwhile utilizes the ECG front to get actual cardiac signals from human. This phase has already been done, though it still needs more polishing and further trials. For the final testing, nine patients of varying ages and cardiac health status will be taken with ECG readings, three replicates from the developed ECG system, and one from an actual ECG device. Using cardiologists’ and patients’ feedback, the user friendliness and accuracy of the ECG-system will be confirmed, and further modifications shall be made. Lastly, the overall cost of producing the ECG system shall be compared to the price of an ECG device, to see if the developed system is indeed cheaper. However, it is ensured that the system is far more portable than its bulkier ancestors. Once the project is fully finished, the accuracy, replicability and usefulness of the system shall be confirmed using F-test.