佛手瓜卷鬚之向觸性及其參與蛋白質之探討
本研究利用佛手瓜的卷鬚探討向觸性的原理。本研究大致分為兩部份,一方面我們在卷鬚中發現了含量極為豐富的構造,此一螺旋狀構造分布於維管束中,且用雙縮?詴劑檢測後發現其含有蛋白質,且不具有運輸水分的功能;並發現此一構造的分布疏密,會影響到螺旋內側外側以及切割後片段泡溫水的彎曲方向。此外,在進行卷鬚蛋白質電泳的過程中,我們發現使用含尿素的緩衝液萃取蛋白質的效果最佳,1克的卷鬚乾重約可萃取到5毫克的蛋白質,且蛋白質總量會隨著卷鬚的成熟而遞減。利用軟體比對及質譜分析八個蛋白質點,得知此八點的蛋白質為:malate dehydrogenase, oxygen-evolving enhancer protein 1, oxyen-evolving enhancer protein 2, calreticulin, peroxidase, stromal 70 kDa heat shock-related protein, and AP2/ERF and B3 domain-containing transcription repressor。由此可知,向觸性為植物經過一連串訊號傳遞後,對外界刺激的順應。
微陣列基因分析法探討心肌細胞在機械性展延下的基因表現
高血壓所誘發的機械性展延是造成心肌肥大的基本因子,本實驗即藉由微陣列基因分析法同時大量的分析機械性展延所造成心肌細胞的基因表現。將新生鼠的心肌細胞施以 20﹪的機械性展延,抽取其 mRNA製作成 cDNA 探針與現成的 cDNA 晶片進行雜漬反應 (此晶片上包含了 480個如訊息傳遞、控制細胞生長週期、細胞骨架等的已知基因),在眾多有因為機械性展延而造成基因表現差異的基因中,我們選擇了 eNOS 基因(內皮細胞 NO合成?)進行西方墨點法及 NOS活性和 NO 產生量測定的實驗,進一步證實 eNOS 的基因表現量的確是增加的,此一結果與微陣列基因分析所得之結果不謀而合。 Mechanical stretch induced by high blood pressure is an initial factor laeding to cardiac\r hypertrophy. The use of cDNA microarrays has made it possible to simultaneously analyze\r stretch-induced gene expression in cardiomyocytes. Neonatal rat cardiomyocytes were cultured on\r malleable silicone dishes and were stretched by 20%. We compared the transcript profiles of\r cardiomyocytes under mechanical stretch for 60 minutes by hybridization of cell-derived cDNA to\r DNA probes immobilized on microarrays. The microarrays contained probes for 480 known genes\r including signal transduction, cell cycle regulators, cytoskeleton and cell motility, and so on. Eighteen\r genes were indentified that showed significantly differential expression in response to mechanical\r stretch in cardiomyocytes. Of the represented genes expressed, endothelial nitric oxide synthase (eNOS)\r genes was the most interesting one. Northern blot and western blot analysis further quantified the\r expression of eNOS gene. Mechanical stretch also increased constitutive NOS activity and NO\r production. Our results indicate that mechanical stretch induces eNOS gene expression thus increases\r constitutive NOS activity and NO production in cardiomyocytes.
無孤力點無交錯分割的區塊細分及五個新的Riordan組合結構
將一個集合{1,2,...,n}分成數個非空的集合(組,區塊),稱為此集合的一個分割。如果可以找到1 ≦ a 已知無孤立點無交錯分割以Riordan 數{rn}n≥0 =1,0,1,1,3,6,15,36,... 來計數。在這篇文章中我們研究無孤立點無交錯分割的一些性質。
首先我們考慮無孤立點的無交錯分割按區塊的細分。我們得出:集合{1,2,...,n}恰含k個區塊的無孤立點的無交錯分割的個數為:
其次,我們證明bn,k和多邊形的剖分有令人訝異的關連。令dn,k是用不相交對角線將凸n 邊形分成k 塊的方法。我們用代數方法證出 bn,k = dn+2−k ,k,也給了一個新的組合證明。
最後,透過對應的方法,我們找出了七個嶄新的組合結構,這些結構都是以Riordan 數來計數。
Partition the set {1,2,...,n} into several nonempty sets (blocks) and call it a partition. If there exists 1 ≦ a It is known that the nonsingleton noncrossing partitions are counted by Riordan numbers {rn}n≥0 =1,0,1,1,3,6,15,36,... In this paper we study the properties of them.
First we consider the enumeration of nonsingleton noncrossing partitions in respect to the blocks. We prove that the number of nonsingleton noncrossing partitions of {1,2,...,n} with k blocks is
Then we give a connection between nonsingleton noncrossing partitions and polygon dissections. Let dn,k be the ways to dissect an n –gon with noncrossing diagonals. We prove that bn,k = dn+2−k ,k
We also give a combinatorial proof. Furthermore, by way of the technic of bijection, we find 7 new combinatorial structures counted by Riordan numbers.
Biochar: the Solution to the Next Green Revolution
1. Purpose of research \r To investigate the feasibility of using municipal cellulosic wastes as feedstock for production of biochar in pyrolysis, the effects of metal catalysts in pyrolysis, and the applicability of the produced biochar as a fertilizer\r 2. Procedures \r A. Investigation into the characteristics of (metal catalyzed) pyrolysis of various cellulosic wastes \r 1. The cellulosic waste (and catalyst) was weighed and put into a boiling tube. The tube was stopped with a plastic bung with holes. A plastic tube and a thermocouple were inserted through the holes. The other end of the plastic tube was submerged. \r 2. A Bunsen flame was used to pyrolyse cellulosic waste. Temperature and time of reaction were recorded. Gas produced was collected underwater. Biochar and bio-oil were obtained and weighed. \r B. Evaluation of adsorptive capabilities of different materials \r 1. Blue light absorbances of KH2PO4 solutions (mixed with vanadate-molybdate reagent to form yellow solutions) at different concentrations were found and an absorbance-concentration curve was established. \r 2. 5g of each material being evaluated was sandwiched between two pieces of filter paper before being put into a suction funnel. KH2PO4 solution was poured into the funnels. The setups were left overnight and filtrates were collected. \r 3. Collected filtrates were mixed with vanadate-molybdate reagent. Concentration of phosphates in each filtrate was found by the curve.\r 3. Data \r I. Highest percentage conversion from waste to biochar: 94.1% (paper towel, iron wool) \r II. Highest sequestration rate of carbon: 98.6% (paper towel, zinc) \r III. Lowest pyrolysis temperature: 162°C (paper towel, copper) \r IV. Best catalyst in terms of speed of biochar production: copper (+47.7%) \r V. Highest speeds of biochar production (w/ and w/o catalyst): 46.4g/hr (paper towel, copper) and 27.7g/hr (sawdust) \r VI. Adsorptions of KH2PO4: 14.4% (biochar from sawdust)/ 9.02% (sawdust)\r 4. Conclusions \r The pyrolysis of cellulosic waste to biochar was achievable at school laboratory conditions, with satisfactory results in carbon sequestration, production speed and percentage conversion. \r Under catalysis by various metals, the production of either biochar or pyrolytic gas and oil can be optimized, providing a low-cost way to derive fuel and sequestration-ready carbon, both crucial as answers to looming crises. The use of copper greatly speeds up pyrolysis and lowers the pyrolysis temperature, further increasing the economic potential of the process. \r Biochar is also an effective means to soil management, as shown in field and laboratory experiments. Its adsorption capability far exceeds that of untreated cellulosic waste, retaining nutrients to be taken by plants instead of leaching away. It was also shown to improve fruit yield and induce ripeness in tomato, making it obvious that biochar is also a viable fertilizer. \r All in all, metal-catalyzed biochar production from municipal cellulosic waste and the subsequent use of biochar as fertilizer have the benefits of: low feedstock cost, low energy cost, fast production, carbon sequestration, soil management and waste recycling. It is a remedy to some of the most persistent and serious global problems: food and energy crisis, water pollution, excessive greenhouse effect alongside waste treatment.
隨機物體轉移過程的實驗時間之初探
有二系統A和B,A中一開始有2k個物體,,B中有0個物體。在一個單位時間內,兩系統可以互相轉移最多一個物體。當B中物體的個數為 i-1,i∈{1,2,...,k+1},我們稱其為狀態 i,從狀態1﹝初態﹞開始計時,到達狀態 k+1﹝相同態﹞便即刻停止實驗,經過之時間為一隨機變數T,稱之為實驗時間。問當兩個系統的物體數剛好相等時,經過的實驗時間之分佈為何?本文將以上述問題為核心,分別探討不同條件下系統的實驗時間所反映出來的現象,如機率、期望值、變異數等等。
Define two systems, A includes 2k objects, and B has none. They can transfer at most one object from one system to another in a time unit. When the number of objects in B is i-1, i∈{1,2,...,k+1} , we say the system is at state i. As soon as system transfer form state 1 ( initial state ) to state k+1 ( the same state ), the experiment stop. Random variable T, called the experiment time, is the time before stop. What would be the distribution of the experiment time if all systems have the same amount of objects within? This article will focus on the described question and discuss what property the experiment time of the system under various conditions has, such as probability, mean, and variance.
Investigation of phytoremediative ability of macrophytes and a design of a phytofiltration system for Singapore’s waterways
"Nitrates and phosphates cause eutrophication when present in high concentrations.\r This project aims to employ macrophytes to reduce such macronutrients in water bodies via growth and kinetic studies, which is a unique fusion of methodologies. It also involves a novel design and analysis of several enclosure prototypes to introduce macrophytes into waterways and their effects on the waterway’s ability to convey storm water rapidly away from flood-prone areas.\r Tropical macrophytes (emergent macrophytes Typha angustifolia and Cyperus haspan, submerged macrophytes Hydrilla verticillata and Cabomba aquatica, floating macrophytes Lemna minor) were grown in simulated wastewater with high nitrate and phosphate concentrations. Analysis of the growth and uptake kinetics of the macrophytes showed a correlation between high growth rate and high nitrates and phosphates uptake. C. aquatica had the highest uptake rate for nitrates and phosphates as well as the highest growth rate of 6.11 ± 1.2 % day-1 . The remaining macrophytes were proven to exhibit good phytoremediative properties, with emergent macrophytes C. haspan and T. angustifolia having great affinity (as indicated by a low Km value) for phosphate and nitrate respectively. An analysis of the phytoremediative abilities of each macrophyte was done to provide recommendations for growth in different aquatic areas.\r A total of eight nettings, made from different materials-linen and plastic, and pore sizes were used to design the enclosure prototypes. These enclosures possess a metal skeletal structure for greater stability. Results show that a combination of 2 different nettings provided the best trade-off between ensuring that the macrophytes were contained within the enclosures and minimising the enclosure’s impact on the flow velocity of the waterways. Enclosures could then be attached to existing infrastructure like the float booms as a platform for large scale phytoremediation locally."