多邊形的剖分圖形數量之探討
從參考資料[1]可知,將凸n+2邊形利用n-1條不相交的對角線剖分成n個三角形的圖形數量即為卡特蘭數Cn。而我利用不相交的對角線把n+2邊形剖分成數個多邊形和三角形的組合,並從此類的剖分圖形與三角剖分圖形之關聯,進而由卡特蘭數的一般式推導出此類剖分圖形數量的一般式。在本研究中可得,若到把n+2邊形剖分成一個k+2邊形和多個三角形的圖形數量是(2n-k+1 n+1) ;把n+2邊形剖分成一個k+2邊形、一個m+2邊形和多個三角形的圖形數量,當m≠k,數量為n+2/2(2n-k-m+2 n+2) ,當m=k時,數量為n+2/2(2n-2k+2 n+2) ;把n+2邊形剖分成一個k1+2邊形、一個k2+2邊形、一個k3+2邊形、和n-k1-k2-k3 個三角形的剖分圖形,當k1,k2,k3兩兩相異時,數量為(n+2)(n+3)(2n-k1-k2-k3+3 n+3) ;把n+2邊形剖分成一個K1+2邊形、一個K2+2邊形、一個K3+2邊形、一個K4+2邊形和n-K1-k2-k3-k4個三角形的剖分圖形當k1,k2,k3,k4兩兩相異,數量為(n+2)(n+3)(n+4)(2n-k1-k2-k3-k4+4 n=4)。並猜測若k1,k2,...,ki兩兩相異時,把n+2邊形剖分成一個k1+2邊形、一個k2+2邊形、…、一個ki+2邊形、和n-Σkj 個三角形的剖分圖形數量為(n+i)!/(n+1)!(2n-Σkj+i n+i) 。