全國中小學科展

二等獎

以結膜影像判斷貧血之研究

全球貧血人口普遍,然許多人並不了解自身是否罹患貧血;長期患有貧血的病人,亦需定期抽血檢驗追蹤是否有貧血惡化達到需接受輸血的程度。研究顯示,結膜之顏色與貧血有絕對關係,結膜越白則貧血越嚴重,醫師也常使用結膜顏色推測是否有貧血情形。若能設計手機軟體自動分割結膜影像並分析其顏色,將有機會推測受試者是否罹患貧血。本研究收集22位無貧血者及8位貧血病人,並獲得其近期血紅素數值。以手機取得受試者之眼睛影像後,成功設計程式以深度學習完成結膜自動影像分割,對於分割影像以面積大小進行後期處理後,依其取得下眼瞼結膜之三原色平均,再利用kNN與SVM演算法判斷預測出該受試者是否具有貧血之症狀。本研究主要分為兩階段,其一為進行下眼瞼結膜分割模型訓練;其二為製作有無貧血之判斷模型。整合上述眼瞼分割模型(IoU=89.8%±0.02%)與貧血判斷模型(SVM以polynomial核函數測出 準確值93.3%±24.3%)後,可得貧血診斷準確率為80%。此結果代表AI技術有機會透過結膜影像,判斷被拍攝者是否有貧血情形,未來若能增加研究人數,將可設計網頁版或手機APP加以推測血紅素值,供大眾居家篩檢。

探討指尖陀螺在不同轉動角度下之力學模型及新型離心設備之設計

本研究可分為三個部分:第一部分利用指尖陀螺在不同角度(0-90度,指旋轉面與水平面之夾角)下進行轉動實驗。實驗結果顯示當角度越大,指尖陀螺的轉動時間越長;當角度為90度時有最長的轉動時間。轉動過程可分為高轉速區與低轉速區。前半部為高轉速區,其轉動頻率隨時間成指數衰減關係;後半段為線性區,其轉動頻率隨時間成線性衰減關係。在第二部分,我們將樹脂注入微型聚乙烯管進行離心實驗,結果顯示指尖陀螺與水平面角度為40度轉動時,可以達到最短的樹脂長度,亦即最好的分離效果。在第三部分,我們根據前述之實驗結果提出設計離心機的新概念,那就是:結合以下兩個要件1.試管轉動時應與轉動軸垂直與 2. 試管的轉動平面與水平面成40度時,此種離心設備相較於傳統離心機應可具有較高向心力(離心力),可達更好的分離效果。

以空氣盒子探討台灣環境中懸浮微粒的潮解膨脹現象

我們的研究是利用空氣盒子設計出一個裝置,用以觀察環境中懸浮微粒潮解膨脹現象。 我們觀察了由硝酸銨與硫酸銨各自以及不同比例與混合模式組成的懸浮微粒。純硝酸銨的潮解點不明顯,純硫酸銨有明顯的潮解點。內混合懸浮微粒有一個潮解點,並且出現3種類型的潮解行為,分別是偏向硝酸銨或硫酸銨以及過渡型,後者粒徑成長的比例會比前兩者來得高。外混合懸浮微粒有兩個潮解點,保留兩種成分各自的特性。 我們利用雨水觀察環境中懸浮微粒的潮解膨脹現象,將其與內混合懸浮微粒的潮解點與潮解行為做比較,來推估其成分與來源。確定我們的裝置能推估出主要的污染成分及來源。

以奈米錫奈米銦增益小分子團水製備及促進藥物傳輸效能探討

小分子團水(water cluster)的製備及應用一直是科學界的挑戰。本實驗利用熱蒸鍍法,加熱金屬塊材成原子蒸氣,在氬氣環境配合液態氮溫度下冷凝收集,成功製備了平均粒徑10nm金、20nm銀、54nm銦、71nm錫、14nm鎳奈米顆粒。將定量的奈米顆粒滲入去離子水中,以超聲波分散顆粒團聚,再以波長530奈米的綠光照射,讀取拉曼散射譜圖,判定來自小分子團水的振盪強度,探討5種奈米顆粒對形成小分子團水的功效。我們驚訝的發現奈米銦藉表面電漿共振(surface plasma resonance)及表面電子氧化還原功效,弱化水分子團簇成大分子團的功效為奈米金的16倍,奈米錫為12倍,也均高效於奈米銀及奈米鎳。以奈米銦及奈米錫增益小分子團水後,對將癌細胞藥物、養分帶入細胞的功效明顯提升。

酯類代謝於花粉萌發及花粉管生長所扮演的角色

研究初期顯示增加儲存時間會降低花粉萌發率,並造成內源性酯類顯著降解。因此我們推測花粉萌發所需的能量可能由內源性酯類提供。先前研究發現雌蕊柱頭分泌物(SE)含有促進花粉萌發的因子,本研究探究 (1)花粉萌發過程中內部酯類組成變化;(2)找出SE如何影響酯類代謝進而促進花粉萌發。利用薄層色層分析法比較後發現極性酯於花粉萌發較中性酯重要,而SE主要加速了磷脂醯肌醇(PIs)、磷酯醯膽鹼(PCs)的降解與雙酸甘油酯(DAGs)的生成。利用LC-MS發現添加SE確實能加速PCs/PIs的降解及DAGs的生成,更能促進PAs的快速生成再降解。我們推測添加SE能夠促進PCs/PIs降解,PIs磷酸化成PIP2後經過PLC水解生成1,4,5-三磷酸酯(IP3)以及DAGs,IP3能促使粗糙內質網釋放內源性鈣離子,而DAGs磷酸化成磷酯酸(PAs)後促使膜上的鈣離子通道打開,讓外源性鈣離子進入花粉管內。而PCs在經過PLD水解後也能形成PAs讓鈣離子進入花粉管內。

探討粒線體如何參與調控細胞內鈣離子訊息傳遞

鈣池調控鈣離子內流(store-operated calcium entry, SOCE)是非興奮性細胞中最主要的鈣離子通道。當內質網缺乏鈣離子時,位在內質網上的STIM1(Stromal interaction molecule 1)便會改變構型與在細胞膜上的ORAI1(Calcium relaease-activated calcium channel protein1)接合,激活SOCE的路徑。近來的研究顯示,粒線體會影響SOCE的活性。已知平均有5%-20%的粒線體藉由連繫蛋白與內質網相連。又已知內職網在缺乏鈣離子時會移動至細胞膜附近,故我們認為粒線體有很大的機率藉由連繫蛋白與內質網一同移動至細胞膜並透過吸收鈣離子的機制來調控SOCE的活性。 在使細胞表現特定螢光蛋白的前提下,我們透過活體細胞攝影來觀察特定對象(粒線體、粒線體內鈣離子)的動態變化。 從實驗結果中我們發現:當SOCE被激活後,粒線體會移動至SOCE發生處且較靠近STIM1。又絕大部分移動至SOCE發生處的粒線體同時也會吸收鈣離子。 過去的研究已證實,當粒線體與內質網之間缺乏鈣離子時,SOCE的活性會降低,且當粒線體內膜的主要鈣離子通道MCU(Mitochondria calcium uniporter)缺乏時,亦會導致相同的結果。又從我們的實驗可知當SOCE被激活時,粒線體會移動至SOCE發生處並吸收鈣離子。綜合上述,我們可以推論以下機制,當細胞內的SOCE被激活時,粒線體會藉由連繫蛋白與內質網一同移動至SOCE發生處,同時以吸收鈣離子的方式來調控SOCE的活性以及細胞內的鈣離子濃度。

多邊形的剖分圖形數量之探討

從參考資料[1]可知,將凸n+2邊形利用n-1條不相交的對角線剖分成n個三角形的圖形數量即為卡特蘭數Cn。而我利用不相交的對角線把n+2邊形剖分成數個多邊形和三角形的組合,並從此類的剖分圖形與三角剖分圖形之關聯,進而由卡特蘭數的一般式推導出此類剖分圖形數量的一般式。在本研究中可得,若到把n+2邊形剖分成一個k+2邊形和多個三角形的圖形數量是(2n-k+1 n+1) ;把n+2邊形剖分成一個k+2邊形、一個m+2邊形和多個三角形的圖形數量,當m≠k,數量為n+2/2(2n-k-m+2 n+2) ,當m=k時,數量為n+2/2(2n-2k+2 n+2) ;把n+2邊形剖分成一個k1+2邊形、一個k2+2邊形、一個k3+2邊形、和n-k1-k2-k3 個三角形的剖分圖形,當k1,k2,k3兩兩相異時,數量為(n+2)(n+3)(2n-k1-k2-k3+3 n+3) ;把n+2邊形剖分成一個K1+2邊形、一個K2+2邊形、一個K3+2邊形、一個K4+2邊形和n-K1-k2-k3-k4個三角形的剖分圖形當k1,k2,k3,k4兩兩相異,數量為(n+2)(n+3)(n+4)(2n-k1-k2-k3-k4+4 n=4)。並猜測若k1,k2,...,ki兩兩相異時,把n+2邊形剖分成一個k1+2邊形、一個k2+2邊形、…、一個ki+2邊形、和n-Σkj 個三角形的剖分圖形數量為(n+i)!/(n+1)!(2n-Σkj+i n+i) 。

Solar Powering Day and Night with Boxed Micro-Biosphere

本研究在生物光伏電池(Bio-photovoltaics, BPV)的陽極添加能氧化含氮廢物放出電子的硝化菌,並在陰極添加能吸收電子還原硝酸鹽與硫酸鹽產生氮氣與硫化氫的厭氧菌,建立不需外部供給物質,能夠自我維持且不斷發電的微型生態圈(Boxed Micro-Biosphere, BMB)。實驗結果顯示在陽極加入硝化菌後,能使含小球藻與共生菌Sym1的BMB功率提升38倍至99.46±9.31μW · m-2,而在陰極加入厭氧菌能讓功率再提升至262.51±37.30 μW · m-2,且此電池截至目前為止已運轉超過4272小時,發電功率仍保有67.4%(176.98 μW · m-2)。若將Sym1與Sym2同時加入陽極則可使功率密度提高至463.19±25.50 (μW · m-2),夜間功率可達白天的93.1%,但在野外實驗環境下一週內就失去發電能力。若將BMB中小球藻換成來自高溫與強酸環境的溫泉藻(H),其野外平均功率為388.80±14.87 μW · m-2,夜間發電量為白天97.9%,其功率與壽命(目前尚在運作中)遠高於小球藻BMB。 未來我們將篩選能加強溫泉藻發電能力的共生菌使其更具實用性。

探討胞外基質軟硬度對神經突生長發育的影響

文獻指出若神經導管能針對不同組織調整適切軟硬度,將更有效協助神經再生,因此,了解胞外基質軟硬度對神經細胞的影響和其感知路徑非常重要。本研究以神經母細胞瘤Neuro-2a進行研究,分析不同軟硬度基質上N2a細胞面積、神經突長度。結果顯示分化後N2a細胞在100 KPa基質上面積大且神經突較長,說明N2a細胞能偵測基質軟硬度並進行生長調控。同時,advillin、paxillin、myosin IIa和pFAK等細胞骨架蛋白於細胞本體表現量在不同軟硬度基質上有所差異,但未與神經突長度相關。生長錐上細胞骨架蛋白表現量於不同軟硬度基質上具有差異,且與神經突長度趨勢吻合,說明神經細胞透過調控advillin和細胞骨架蛋白在生長錐上的表現量影響神經突生長長度。未分化N2a細胞轉染pAdvillin-IRES-hrGFP和pS1S3-HP-FLAG後長出神經突,且根據基質軟硬度生長情形不同,但轉染pS1S3-HP-FLAG長出的神經突長度較短,說明advillin的nucleation功能在神經突生長扮演重要角色。

愛的約束-鼻胃管自拔監控暨約束手環

許多長者常因吞嚥功能退化,飲食過程中易引發吸入性肺炎,或是患者手術後吞嚥功能暫時消失。目前台灣社會對這些狀況最易被接受的治療方式是從鼻腔放入一條直達胃部的軟管,俗稱鼻胃管。但是管子本身會造成人體不適,因此許多患者會將管子拔出。管子拔出相對舒適,但當再次將管子放回時,會使病患更加不適。且台灣步入高齡化社會,照護人員短缺,使鼻胃管脫落成為台灣醫療通報事件的榜首。 為了改善這問題,我們設計了一款照護輔助手環,藉由EMG Sensor 來偵測手指動作,搭配3組感應距離不同的RFID讀取器,來偵測手部與鼻胃管接頭距離。當系統認為患者有自拔危險時,便啟動約束裝置,由手環上方彈射出一塊彈性布將手掌全部包住,並同步發出警告聲響及手機訊息。本作品可以避免患者面臨二次插管的窘境,亦能減輕照護者及護理人員的負擔,是長照時代的重要幫手。