Determining Crystal Orientation via Reflection High Energy Electron Diffraction
1 Purpose of the Research Nanocrystal thin films exhibit many useful properties, including electrochromicity and superconductivity. When synthesised via Molecular Beam Epitaxy (MBE), selection of substrate, specifically knowledge of crystal orientation, is critical. Reflection High Energy Electron Diffraction (RHEED) is an in situ crystal characterisation method highly compatible with MBE. This study explores a new method of RHEED analysis to determine crystal orientation. 2 Procedure/Theoretical Framework RHEED characterization is the incidence of a beam of high-energy electrons at a low angle with respect to the sample surface. Electrons diffract, and interfere to form patterns on the detector. Traditionally, studies of RHEED analyse one static image as a representation of the surface structure, or observations of RHEED patterns over time. The approach to RHEED analysis in this study exploits changes in RHEED patterns given a rotating substrate. Having specific rotational symmetries along different axes, crystal structures can be differentiated by determining rotational symmetry through RHEED. Electrons scatter upon incidence with crystal planes within the crystal to form Kikuchi lines on the RHEED detector (Fig. 2). The orientation of crystal with respect to incident electron beam affects the Kikuchi line patterns. If the crystal is rotated, crystal planes change orientation, and electrons would diffract from crystal planes in different directions. As such, as the crystal is rotated, the Kikuchi lines move. When the degree of rotation of the crystal corresponds to the rotational symmetry of the crystal (Fig. 1), the Kikuchi lines return to their original position. As crystals with different crystal plane orientations exhibit different orders of symmetries, analyzing the Kikuchi line patterns of the crystal at different degrees of rotation can reveal the rotational symmetry and consequently crystal plane orientation of a crystal. 3 Data/Experimental Testing In order to assess the practical viability of the proposed method, experiments were conducted on SrTiO3 (001), (110), and (111). SrTiO3 exists as a typical perovskite structure (Fig. 3), often used in the synthesis of superconductors via MBE. 3.1 Methodology RHEED images of each sample were taken at 0◦, 60◦, 90◦ and 180◦. Curves were fit to each Kikuchi line observed in the image (Fig. 4). These Kikuchi line approximations are compared by superimposing the curves traced and qualitatively assessing the degree of similarity between the Kikuchi lines of 2 images, to verify the order of symmetry and crystal orientation of the crystal. In the images of the superimposed Kikuchi lines illustrated in Fig. 5, there is similarity between the Kikuchi lines when only when the sample has been rotated by an angle corresponding its degree of symmetry. 4 Conclusions This study offers a method to determine the crystal orientation of thin film through determining the degree of rotational symmetry of the sample, by observation of Kikuchi lines in the RHEED pattern as the sample is rotated. Experimental data was analyzed qualitatively to verify the viability of this theoretical method in practice. This method could be extended to analyze the symmetry of other crystal structures. As it does not require information on the machine settings or usage of complex functions to produce a reliable output, this method is fast and straightforward, opening doors to more streamlined RHEED analysis.
SeedBot: Low-Cost Seeding Robot for Agricultural Applications
This paper presents a semi-autonomous seeding robot which is based on both electrical and mechanical platforms that perform advance agriculture process. SeedBot composed of four components: drilling mechanism, body of robot, seed container and paving mechanism. Other than those components the sensor system and the control system are also discussed. The aim of this study is designing and building a low-cost robotic system to automate and optimize process during farming especially for personal usage. This study demonstrates that semi-autonomous farming has crucial advantages over conventional farming. In addition to that, SeedBot provides safer, requires less manpower and precise farming than usual methods that we have so far.
Investigating the Effect of Coloured Light on the Behaviour and Learning of Lymnae stagnalis
Lymnae stagnalis (pond snail) is emerging as a preferable invertebrate model in understanding neurological mechanisms because of its simple nervous system. A three-cell network mediates behaviours such as aerial respiration and research has shown that small, subtle changes occurring across the network might result in a disruption of natural behaviour (Lukowiak et al. 1995). It is also known that Lymnae features a more developed eye than other molluscs and studies have shown that various wavelengths of light can activate photoreceptors producing distinct electrophysiological responses (Sakakibara et al. 2004). However, no studies have looked beyond the electrophysiological response. The purpose of this project was to determine if coloured light would firstly, elicit a behavioural response as observed in its movement and secondly, affect learning and memory through the operant conditioning of its aerial respiration.
Studies of Hydrogen Evolution Reactions from Aluminum Foil using Waste Materials and Their Reaction Mechanism
Nowadays, the most of waste materials are incinerated and generated the toxic gases in 日本. On the other hand, the Hydrogen gas (H2) has attracted attention as clean energy due to no emissions of toxic gases. In this work, we investigated that the new hydrogen evolution system using waste materials, such as aluminum (Al) foil and lime desiccant, and also investigated their reaction mechanism. The grinded desiccant was added to Erlenmeyer flask containing 300 mL of water. After dissolution the desiccant, the Al foil was added to the solution to begin the reaction. Generated gas was determined by water displacement method. The gas components are identified by gas chromatography. We found that the waste material reaction combined with waste lime desiccant and Al foil could be used for one of the hydrogen evolution system. This reaction is depended on solubility of lime desiccant, thus mean solubility of CaO in water. The Al foil is reacted with the desiccant more than 20 times of reaction stoichiometry. The calcium ion or calcium complex ions are involved with the excess reaction of Al foil.