Development of Oil Collecting Submarine using AI and hydrophobic solution
Such as the plastic waste and industrial discharge that permeate our oceans, it is the insidious and infamous nature of oil spills that demands our immediate attention. These spills, with their far-reaching ecological ramifications, pose a profound danger to our marine ecosystems, demanding urgent action and a heightened awareness of the true menace that is caused by this oil
Detection of Calcium Oxalate in Nephrolithiasis Using Ca-D
Nephrolithiasis isacommondiseasewherestoneisfoundinthe kidney. Kidney stones areharddepositsmadeofmineralsandsalts that form inside your kidneys. Urine has various wastes dissolved in it. When there is too much waste in too little liquid, crystals begin to form. Sometimes, tiny stones move out ofthebodyinthe urine without causingtoomuchpainanditcontainscalciumoxide. But stones that don't move may cause a back-up of urine in the kidney, ureter, the bladder, or the urethra. Therefore, Ca-d is used as an effective and affordable alternative device to check kidney stones. A new detector we can operate as an indicator for people who have high calcium oxalate levels in their urine. Which will help us to check calcium oxalate levels easily and practically with the use of tds (PPM as its unit). It can check whether people have high PPM levels that can cause issues like nephrolithiasis. It can also be used regularly so that people can avoid the disease by consistently checking their urine with Ca-d.
Development of a nano-filtration membrane using different linear aliphatic amines and linear cross-linkers for purification of expensive and precious organic solvents
Theseparation, purification, and recovery of precious organic solvents is a huge challenge for many industriesincludingpetroleumandpharmaceuticalcompanies,sincethesecompaniesusehugequantities of organic solvents [1-2]. Natural dissolvable nanofiltration(ON)has atremendous potential for supplantingafewenergy-concentratedcrudepurgingtechniques,similartorefiningandextraction[3-4- 5]. The importance of OSN is obvious from the fact that one cubic meter of methanol requires 1750 MJ of energy for distillation since the process of distillation is comprised of heating, evaporation, and condensation while OSN can purify the same volume of methanol by consuming 3 MJ of energy [6-7]. Additionally, OSN is a useful technology since it is simpler to use than conventional purification and separationmethods.Themembrane'sporestructure,whichinfluencesbothitsselectivityandpermeance, hasasignificantimpactonhowwellthemembranesperform[8-9].Ingeneral,thetrade-offbetweenflux andselectivityaffectsthemembrane'sperformance.Asaresult,themembranes'fluxandpermeabilityare affectedbythetailoringandtuningoftheirporestructure.Therefore,designinganefficientnanofiltration membranes with ideal porosity is highly desirable. Interfacial polymerization (IP) is highly versatile as it provides a freedom of selection of various monomersfortargetingaspecificapplicationsuchasnanofiltrationandreverseosmosisThepotentialfor organicsolventnanofiltration(ON)toreplacevariousenergy-intensivetraditionalpurificationtechniques, suchasdistillationandextraction,isenormous.[8-9].Despitethefactthatmanydifferentmonomershave been successfully used by utilizing IP to create thin film composite nanofiltration TFC-NF membranes, one of the main limitations of such membranes continues to be the poor selection of closely related comparable nanometer sized solutes. Many efforts are still being made to develop potential monomers with the perfect properties for creating membranes that operate excellently [10-11]. Another strategy is also getting more popular in which different porous additives are added to the TFC membrane either at thesupportleveloractivelayerlevel.Theseadditivesincludecarbonorganicframeworks(COFs),metal organic frameworks (MOFs), hyper-cross-linked porous polymers (HCPs), and natural polymers such as chitosan[12-13-14-15]. However,maintainingthecrystallinity ofsuch additives,particularlyMOFsthat lead to crystalline membranes, is extremely difficult while other additions suffer from aggregation and agglomeration that results in membrane flaws that impair the performance of the membranes [16]. Therefore,changingthechemistryofthereacting monomerduringIPcansignificantlyalterthestructure of the resultant active layers of the membranes. The current study was carried out by using linear aliphatic amines 4A-3P and 4A on a crosslinked PAN support. The study was carried out through interfacial polymerization between either 4A-3P and TPC or 4A and TPC on crosslinked PAN. In comparison to the previous studies where cyclic amines such as piperazine or aromatic amines such as meta-phenylenediamine (MPD) are used, we have used linear aliphatic amines 4A and 4A-3P crosslinked with organic phase containing terephthaloyl chloride (TPC) asacross-linker.TheIPreactionwascarriedoutbetweenamineandTPConacrosslinkedPANsupport. The fabricated membrane was extensively characterized by using scanning electron microscope (SEM), ATR-FTIR, water contact angle (WCA), energy dispersive X-ray (EDX) and elemental mapping . The fabricated membrane was used for OSN applications by using dead-end filtration setup.
Bifunctional Nanostructured TiO2 photoelectrocatalyst for Improving Overall Water splitting performance
Titanium dioxide TiO2 is a semiconductor, that has great chemical and physical properties, such as remarkable resistance against corrosion, chemical stability, and it’s a non-toxic material. Due to these properties, it rises as an excellent candidate for a wide range of different applications, such as being a popular material for solar cells, paints, cosmetics, energy storge devices, and water splitting. For photoelectrochemical water splitting to generate Hydrogen, a large surface area is essential, to be maximized to enhance photocatalytic redox processes and hence improve overall efficiency. Therefore, different methods have been utilized to fabricate TiO2 nanotubular structure. However, they either encounter a difficult process because of a long synthesis time or the need of expensive precursors. In our work, we demonstrated a study of enhancing 1 D TiO2 film to perform as a bifunctional catalyst (works as cathode and anode). As it is known that TiO2 is kinetically hampered as cathode for producing hydrogen from water, this is due to sluggish electron transfer at the interface between TiO2 and water and the conduction band of the TiO2, which is more negative than H+/H2. To tackle this problem, TiO2 film should be modified. In this work, we modified the TiO2 as bifunctional by investigating different parameters in detail, like the anodic oxidation solution content, anodic oxidation time, and the role of the polyethylene glycol chain. Electrochemical characterization and SEM, and XPS were utilized to prevent the nanotubes structure and to confirm the chemical bonding as well as investigating the physical properties such as resistance and electron kinetic mobility.