全國中小學科展

三等獎

Development of a nano-filtration membrane using different linear aliphatic amines and linear cross-linkers for purification of expensive and precious organic solvents

Theseparation, purification, and recovery of precious organic solvents is a huge challenge for many industriesincludingpetroleumandpharmaceuticalcompanies,sincethesecompaniesusehugequantities of organic solvents [1-2]. Natural dissolvable nanofiltration(ON)has atremendous potential for supplantingafewenergy-concentratedcrudepurgingtechniques,similartorefiningandextraction[3-4- 5]. The importance of OSN is obvious from the fact that one cubic meter of methanol requires 1750 MJ of energy for distillation since the process of distillation is comprised of heating, evaporation, and condensation while OSN can purify the same volume of methanol by consuming 3 MJ of energy [6-7]. Additionally, OSN is a useful technology since it is simpler to use than conventional purification and separationmethods.Themembrane'sporestructure,whichinfluencesbothitsselectivityandpermeance, hasasignificantimpactonhowwellthemembranesperform[8-9].Ingeneral,thetrade-offbetweenflux andselectivityaffectsthemembrane'sperformance.Asaresult,themembranes'fluxandpermeabilityare affectedbythetailoringandtuningoftheirporestructure.Therefore,designinganefficientnanofiltration membranes with ideal porosity is highly desirable. Interfacial polymerization (IP) is highly versatile as it provides a freedom of selection of various monomersfortargetingaspecificapplicationsuchasnanofiltrationandreverseosmosisThepotentialfor organicsolventnanofiltration(ON)toreplacevariousenergy-intensivetraditionalpurificationtechniques, suchasdistillationandextraction,isenormous.[8-9].Despitethefactthatmanydifferentmonomershave been successfully used by utilizing IP to create thin film composite nanofiltration TFC-NF membranes, one of the main limitations of such membranes continues to be the poor selection of closely related comparable nanometer sized solutes. Many efforts are still being made to develop potential monomers with the perfect properties for creating membranes that operate excellently [10-11]. Another strategy is also getting more popular in which different porous additives are added to the TFC membrane either at thesupportleveloractivelayerlevel.Theseadditivesincludecarbonorganicframeworks(COFs),metal organic frameworks (MOFs), hyper-cross-linked porous polymers (HCPs), and natural polymers such as chitosan[12-13-14-15]. However,maintainingthecrystallinity ofsuch additives,particularlyMOFsthat lead to crystalline membranes, is extremely difficult while other additions suffer from aggregation and agglomeration that results in membrane flaws that impair the performance of the membranes [16]. Therefore,changingthechemistryofthereacting monomerduringIPcansignificantlyalterthestructure of the resultant active layers of the membranes. The current study was carried out by using linear aliphatic amines 4A-3P and 4A on a crosslinked PAN support. The study was carried out through interfacial polymerization between either 4A-3P and TPC or 4A and TPC on crosslinked PAN. In comparison to the previous studies where cyclic amines such as piperazine or aromatic amines such as meta-phenylenediamine (MPD) are used, we have used linear aliphatic amines 4A and 4A-3P crosslinked with organic phase containing terephthaloyl chloride (TPC) asacross-linker.TheIPreactionwascarriedoutbetweenamineandTPConacrosslinkedPANsupport. The fabricated membrane was extensively characterized by using scanning electron microscope (SEM), ATR-FTIR, water contact angle (WCA), energy dispersive X-ray (EDX) and elemental mapping . The fabricated membrane was used for OSN applications by using dead-end filtration setup.

以智慧型高親水薄膜提升汗液感測靈敏度 Enhancing Sweat Sensing Sensitivity with SmartHydrophilic Thin Films

本研究主要是以晶片和織布進行結合,以電極收集訊號分析受測者的鈉濃度和汗液流量,研發長期保持潤濕和擁有穩定性的高親水性薄膜Polyacrylic acid / Cellulose nanocrystals(PAA / CNC)感測器。製備不同濃度比例的PAA / CNC光固化水凝膠,進行接觸角、FTIR圖譜、溶脹比 (Swelling Ratio)、SEM、EIS 潤濕面積分析並比較選擇出PAA /10 CNC的濃度比例作為最佳的汗液感測電極。利用CNC與PET片間貼合度強化結果,能有效提升薄膜親水性,降低電極與織布中的親疏水性差異,加強電極感測靈敏度,相較於對照組,電容值結果顯示約提升5~10倍的靈敏度。本研究開發一個靈敏且穩定即時監測汗液的薄膜,並結合藍芽應用於智慧裝置。

圓桌中對應編號的錯排問題

本研究主要探討,有n位教授要在一個圓桌上舉行會議,其中每位教授都有自己的編號 (1~ n號),同時圓桌的 n個位置上也有各自的名牌編號 (1 ~n 號) 以順時針擺放置圓桌上與教授們的編號對應。其中第一個進來的 1號教授坐到了圓桌上 k號位,此後的教授們亂序一個一個進入,若發現與自己編號相同的位置是空的,就直接入座;若與自己編號相同的位置被占走了,就以逆時針方向尋找空位,直到有空入座。在這樣的遊戲規則下,本研究探討了,有 n位教授,且 1號教授坐到 k號位,如何給定一組教授入場的順序,就能即刻的找出對應的坐法,以及計算坐錯人數的期望值和坐錯人數次數分佈表等等,後續再將遊戲規則改為,1號教授不限定為第一個入場的人,同樣的探討上述問題。

探討長片段非編碼RNA:IRX4-AS1在前列腺癌中的角色 Investigate the Role of Long Non-Coding RNA: IRX4-AS1 in Prostate Cancer

前列腺癌(PCa)是全球男性最常見的惡性腫瘤,雄性激素受體拮抗劑是常用的治療藥物,而其存在抗藥性演進問題。人類基因組有98%的基因未編碼蛋白質,許多研究證明這些非編 碼RNA在細胞中具重要功能,並與前列腺癌進程有關。 本研究藉由分析病人檢體資料,發現IRX4-AS1在前列腺癌細胞的表現量高於正常細胞,並且IRX4-AS1表現量較高的病人五年存活率較差。我們也在體外實驗發現,IRX4-AS1的202異構型主要表現在細胞核;203異構型則多在細胞質,兩者可能有不同作用機轉。相較於IRX 4,IRX4-AS1的穩定性較高,顯示其可能與蛋白質共同作用。在抗藥性細胞株中,IRX4-AS1表現量則低於正常細胞株。 未來將研究IRX4–AS1對前列腺癌惡化與抗藥性的影響,期待其能做為疾病診斷及預後的生物標誌物。

Silver nanoparticles-loaded titanium dioxide coating towards immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation

The environmental implications of rapid industrialization, including rising pollution, depleted resources, the effects of climate change brought on by global warming, and unrestrained groundwater extraction, are contributing to a growing water scarcity crisis [1-3]. The improvements in quality of life are largely attributable to the innovations in manufacturing technology made possible by the Industrial Revolution, but these innovations also pose risks to the natural world and human health [1-3]. The textile business uses a wide variety of raw materials, including natural fibers like cotton as well as synthetic and woolen fibers, and the chemical components of dyes are just one example. The annual output of synthetic dyes is around 700,000 tons, and there are over 10,000 different varieties available. As much as 200,000 tons of synthetic dyes are released into the environment every year due to the inefficient dyeing technique commonly employed in the textile industry. According to the World Bank, the processing of textiles for dyeing and finishing accounts for between 17 and 20 percent of industrial wastewater [1-3]. Textile wastewaters contain a high biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, color, acidity, high suspended particles, high dissolved solids, surfactants, dyestuffs, heavy metals, and other soluble chemicals [3] due to the variety of dyes used to color textile items. In particular, water-soluble reactive and azo dyes are employed to obtain the required color. Ten to twenty percent of the dyes used end up in the effluents, where they might harm wildlife and the ecosystem (carcinogenic or mutagenic). Headaches, nausea, skin irritation, respiratory difficulties, and congenital deformities are only some of the health problems linked to exposure to textile wastewater. There are repercussions for aquatic ecology, environmental biodiversity, and the quality of receiving water bodies. New, low-cost, and highly effective water treatment methods are needed to deal with polluted wastewater. Adsorption and coagulation, two common water purification methods, just concentrate pollutants by shifting them to other phases; they do not "eliminate" or "destroy" them. Sedimentation, filtration, chemical oxidation, and biotechnology are all examples of conventional water treatment methods, but they all have their drawbacks. These include insufficient removal, high chemical reagent consumption, high treatment costs, long treatment times, and the creation of toxic secondary pollutants. New water treatment procedures are needed to improve the quality of treated effluent [1-3]. The use of semiconductor particles in photocatalysis is gaining appeal as a solution to global pollution problems due to its shown efficiency in degrading a wide variety of contaminants. Photocatalyst-coated surfaces-based reactors have proven to be practical for long-term operation over photocatalytic powder-based reactors (i.e., slurry-based reactors) [4-5]. As a promising photo-electrode and photocatalyst, titanium dioxide (TiO2) has enjoyed wider applicability in photocatalytic hydrogen generation, solar cells, and remediation of organic contaminants among other photo-catalytic applications [4-6]. TiO2 has been recognized as one of the low-cost, most effective, and fascinating photo-catalyst as a result of its interesting thermal and chemical stability, desirable electronic features, others, and environmental benignity [6-8]. Pristine TiO2 semiconductor is characterized by a wide band gap that can only utilize the UV part of the light spectrum with a wavelength of less than 385 nm, which is just 5% of the sunlight energy capacity. Spectrum usability extension to visible regions warrants further and extensive research study [8-10]. Additionally, the quickness of the recombination of photo-generated holes and electrons further restricts the practical applicability of the semiconductor [10-12]. It is highly desirable to develop a cost-effective scalable strategy to over these drawbacks toward sustainable development and a clean environment using only natural sunlight irradiation [5-11]. In addition, it is preferred to fabricate them as films rather than powders as photocatalytic immobilized reactors are more practical than powder-based reactors [4-8]. Dye sensitization, supports, magnetic separation, and surface modification by doping with non-metals, metals, and transition metals and coupling with other semiconductors have all been used to enhance the photocatalytic activity of TiO2 photocatalyst. Higher photonic efficiency can be attained through the synergistic fine-tuning of features such as physical, chemical, and electronic, and these composites and hybrid materials based on TiO2 are creating a big trend. Doping has been widely studied as a means of altering the surface of TiO2. Rare earth metals, noble metals, and transition metals are all discussed in the existing literature on the surface modification of TiO2 doped with cations [4-12]. In this study, for the first time, Ag nanoparticles loaded mesoporous TiO2 coating was prepared and applied as an immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation.

以海源醫材製備新穎有機無機骨組織工程複合支架

膠原蛋白植入人體易降解,在骨組織工程有許多限制,研究用水熱法萃取魚鱗膠原蛋白, 藉GPTMS(3-環氧丙基三甲氧基矽烷)為偶聯劑,交聯四乙基矽酸酯(TEOS)提供的矽網格、魚鱗膠原蛋白、低分子殼聚醣,選擇性添加具黏性多巴胺分子增強機械強度,製備兩種海洋 來源骨組織支架-殼聚醣膠原蛋白複合支架(Collagen Chitosan, CC) 及殼聚醣膠原蛋白多巴胺 複合支架(Collagen Chitosan Dopamine, CCD)。FTIR數據顯示CC支架經GPTMS作用成功產生Si-O-Si基團,CCD樣品中有多巴胺醌化學鍵結產生。NMR結果顯示CC和CCD支架順利開環 反應,證明材料成功合成。SEM可見加入多巴胺會讓CC孔洞變小、多孔結構消失。應力應 變曲線量測結果中知機械性質增強。體外實驗得骨組織支架具良好可控降解性,實驗後一個 月降解40%,支架強度約為人軟骨1/3,無細胞毒性。可嘗試免疫調節劑添加或結合其他生物 相容性材料,擴大骨組織支架應用性。

The Role of Impaired SUV3 in Mitochondrial Dysfunction and Its Linkage to Insulin Resistance in Type 2 Diabetes

第二型糖尿病的主要致病機轉為胰島素阻抗性, 但胰島素阻抗性的機轉仍不清楚。以往研究發現胰島素阻抗性與粒線體功能異常高度相關,但是兩者➀間的關係及機轉目前仍有爭議。本研究以 SUV3來進行調控,SUV3為粒線體RNA分解體➀組成要件,負責粒線體RNA中的代謝及調控。小鼠SUV3缺失會引起粒線體DNA突變,粒線體功能下降,而這些表現型可以經由會由母系遺傳到下一代。我們發現這些經母系遺傳到粒線體DNA突變的小鼠,會產生葡萄糖不耐症與胰島素阻抗性,伴隨骨骼肌的磷酸化Akt表現量明顯下降。進一步的研究發現經母系遺傳到粒線體 DNA突變的小鼠會產生高游離脂肪酸血症及運動耐受性下降,間接卡洛里測定顯示脂肪酸燃燒的比例下降。影響胰島素信息傳遞途徑,因而引發胰島素阻抗性。這些研究結果將有助於糖尿病患者的臨床研究,並希望能夠幫助患者。

區域水流流場3D重建系統的探討與應用 Discussion and Application of 3D Reconstruction System for Regional Water Flow Fields

本研究透過JY61P六軸加速度陀螺儀與ESP-32S控制板,製作出球形水流流場監測模組,藉由Unity 3D軟體與C#程式編寫,擬合出水域的水流狀況,再搭配空拍圖與水域深度探測,進行水域模型的建立。在沙崙海水浴場水流模型,發現當水流由西南方進入模型時沿岸流會順著海岸線流入鳥喙地形,與本研究模擬出的水流流場相符,確認所設計之區域水流流場3D重建系統的可行性與準確性。若將水流流場監測模組連接GPS浮標,可方便回收監測模組並輔助水流流場監測,能探測更深、更廣的未知水域流場。 本研究建立的區域水流流場3D重建系統,可廣泛應用在未知水域的模型建立,發揮預警功能。在青山瀑布水流流場監測實驗中,發現在瀑布水潭中,不同的深度有不同的水流差異產生;且在不同位置可能會有斷層式的地形高低變化,因此在未知水域活動時,應注意水域環境狀況以確保自身安全。

Wibrazz

"Blindness keeps you from things, deafness keeps you from people" (Helen Keller) Wibrazz is a communication tool that can be placed inside sportswear. Two versions have been developed. The simpler one allows hearing-impaired footballers to compete in the league with other athletes. The referee is given an additional device to give a signal when he blows his whistle. The hearing-impaired footballer then senses the signal from the device he is wearing and knows that he must pay attention to the referee. The complex version speeds up communication between the coach and the players during training sessions. It allows the coach to send simple messages to his players using his smart device. The athlete senses the signal from the device and acts on what has been previously discussed (e.g. a long signal means, "Everyone come to me!") With over 70 million deaf people worldwide, and 2-4 out of 1000 people in the United States who are functionally deaf, this can affect an individual's mental and physical well-being, and it is therefore a pressing issue to provide these athletes with the means to develop their talents in a traditional team environment. In addition to the organisations within countries, the ICSD is present on the international stage. Their importance is demonstrated by the fact that the 2023 Deaf Football World Cup featured teams from countries such as the United States, Germany, England and Japan.

SVMR: Smart Versatile Medication Robot

In 2565 B.E., 泰國's elderly, comprising 18.3% of the population at 12,116,199, faced health challenges, with diabetes, cerebrovascular disease, arthritis, and lung cancer prevalent. Caregiving hurdles arose as many family members worked outside, impacting the care of elderly individuals with these conditions. To address this, the "SVMR Medication Reminder and Care Robot for the Elderly" was developed. Known as the Smart Versatile Medication Robot (SVMR) or "New Robot," it serves as a user-friendly solution for home-based elderly care. Recognizing the adverse effects of missed medication on health, the SVMR system, combining hardware (New Robot) and software (Application), aimed to alleviate caregiving burdens. The New Robot's hardware includes a customizable medication reminder system, a video call system, closed-circuit camera system, doctor's recommendation display system, and an SOS system for emergency assistance. The Application complements this with features like medication schedule setting, video call communication, activity tracking, daily schedule management, and live camera monitoring. During the SVMR prototype trial, one unit was tested, with developers' relatives trying the medication dispensing system. Positive results emerged, showcasing improved medication adherence among the elderly and affording caregivers more time for other responsibilities. Satisfaction levels, as assessed through interviews, were notably high. Elderly feedback suggested the need for additional compartments for different medications and enhanced notification methods, particularly when they were not in proximity to the medication cabinet. In essence, the SVMR system provides a comprehensive solution to the challenges faced by households with elderly members, ensuring better disease management, increased medication adherence, and support for caregivers, all within a concise and user-friendly framework.