Development of Oil Collecting Submarine using AI and hydrophobic solution
Such as the plastic waste and industrial discharge that permeate our oceans, it is the insidious and infamous nature of oil spills that demands our immediate attention. These spills, with their far-reaching ecological ramifications, pose a profound danger to our marine ecosystems, demanding urgent action and a heightened awareness of the true menace that is caused by this oil
Trojan Horses in the Fight against Skin Cancer
In photodynamic therapy (PDT), reactive oxygen species are generated within the cytoplasm to destroy cancer cells selectively. Using porphyrinic structures (PS) as photosensitizers holds promise for targeting cancer cells. However, direct incorporation of the porphyrins into cancer cells remains elusive. Hence, Dr. Martina Vermathen’s research introduced specific membranous phospholipid nanocarriers for topical porphyrin applications. However, since a sufficiently high enough concentration of PS in cancer cells has not yet been achieved, this study aimed to improve skin uptake of the nanocarriers. Two approaches were examined: (1) comparing polar and nonpolar porphyrins and (2) assessing the effect of a penetration enhancer, DMSO, through a neat and diluted application. The polarity of the porphyrins was first quantified with a log P test. The nanocarriers were assembled by incorporating two different PS compounds, either the mono- or tetra-4-carboxy substituted phenyl porphyrin. They were then characterized by 1D and 2D-NMR analysis. The porphyrin permeation was tested by Franz diffusion tests on pig ear skin. For the second approach, DMSO was added in the Franz diffusion test, either directly applied on the skin (“neat“) or diluted in the nanocarriers (“diluted”). The log P test for the mono- and the tetra-carboxyphenyl porphyrin resulted in values of 4.5 and -1.1, respectively. The more polar tetra-carboxyphenyl porphyrin exhibited 2.8 times better skin uptake compared to the mono-carboxyphenyl porphyrin. The neat DMSO application increased uptake by a factor of 5.5. The diluted DMSO application worsened skin uptake slightly. Analytical techniques revealed differences in porphyrin encapsulation: The mono-carboxyphenyl porphyrins were encapsulated in the centre, whereas tetra-carboxyphenyl porphyrins were localised around the nanocarriers. Results indicated potential instability of the nanocarriers. The more polar tetra-substituted porphyrins showed superior skin diffusion than the mono-substituted derivative. The neat DMSO application facilitated enhanced skin uptake by inducing membrane destabilization and pore formation but may have limited applicability. Further research is suggested to explore porphyrinic PS with alternative polar substitution patterns and tailored penetration enhancers for lipid-based delivery systems. Overall, the study underscores the importance of molecular properties of the PS system and demonstrates the potential of penetration enhancers in optimizing PDT for skin cancer treatment.
ENVIRONMENTALLY FRIENDLY UPCYCLING APPROACH TO INCREASE IMPACT RESISTANCE OF REINFORCED CONCRETE STRUCTURES: USE OF INDUSTRIAL WASTE AS CONSERVATION MATERIAL
Within the scope of sustainable cities and responsible consumption, which are among the goals of sustainable development, it is aimed to contribute to life safety, defense industry, protection from disasters and economy with the new generation environmental building technologies and materials to be developed in the field of construction. It is a critical issue to protect reinforced concrete structures, piers, bridge piers, overpasses against impacts, and to reduce the damages and economic losses in disaster situations. Reinforced concrete scaffolding is the load-bearing component of the structure and its impact resistance is crucial to the overall safety of the concrete structure. Therefore, there is a need to develop technologies that can protect structures against explosion and impact loads. Within the scope of the project, environmentally friendly and low-cost concrete materials with industrial waste glass, aluminum, plastic material additives, which can be used in columns, which are the most important part in the strength of reinforced concrete structures to prevent explosion and impact damage, were produced and their strengths were analyzed. The use and design of these materials in the strength of concrete creates the originality of the project. When the results obtained in the project were examined, it was observed that the steel fiber concretes with the addition of waste glass, aluminum ring, disc, beverage can and plastic bottle were resistant to high pressure when compared with the control groups without additives, and the change in surface height after the impact test, visual analysis and load-time graphics showed this. It is seen that the additives have a cushioning effect against the impact, absorbing the energy against the force by 87.6% and increasing the strength significantly. In this project, where it is aimed to increase the strength of concrete structures by using the impact energy absorption feature of waste glass, plastic and aluminum, products with high added value are developed, contributing to the literature and the construction sector. With the large-scale use of the project, the costs spent on the disposal of waste materials will be reduced, the upcycling based on re-using the waste products will be contributed, and the loss of life and property due to impacts and explosions will be prevented.