Development and Comparison of a Small-Scale Toroidal Horizontal-Axis Wind Turbine to a Conventional HAWT Design
Wind energy is one of the most promising and rapidly growing sources of renewable energy, although maximizing its efficiency while minimizing noise remains a challenge and limits its widespread adoption. The emergence of toroidal propellers, which have gained popularity for producing comparable thrust levels to traditional drone propellers while producing less noise, could mitigate this. This study aimed to develop a small-scale toroidal HAWT and compare its power and noise output to a conventional rotor design under similar wind velocity conditions. 15-centimeter diameter models of the toroidal and conventional rotors were created in Fusion 360 and simulated using Ansys Fluent to identify the significant aerodynamic characteristics that positively affect the blades’ power coefficient. The toroidal design with the greatest simulated power output at low tip speed ratios (TSRs) was then 3D printed and physically tested in a wind tunnel against the control rotor. The experimental results confirmed that the toroidal design had greater power coefficients at lower TSRs compared to the control rotor. The toroidal rotor started operating at a wind velocity of 3 m/s compared to the control rotor’s 6 m/s, which indicates superior start-up characteristics. While the toroidal rotor produced half the power output of the control at the highest tested wind speed of 7 m/s, it emitted 18 decibels less noise and showed a reduction in discernible noise between frequencies of two to five kilohertz. The results from this study show its potential in low-noise wind turbines within low-wind velocity environments.
Utilizing Sparse Optimal Linear Feedback Control to Design Targeted Therapeutic Strategies for Enhancing Gut Microbiome Stability
According to the 2024 American Cancer Risk Survey, one in 24 individuals is at high risk of developing colon cancer. This condition is linked to gut microbiome instability. Consequently, there is a pressing need for a more effective and precise approach to maintaining gut microbiome stability, which this research aims to solve by finding the most crucial bacteria species in maintaining the stability of the gut microbiome through the application of Optimal Linear Feedback Control. Two of its variants being applied in this research are Sparsity Promoting Linear Quadratic Regulator (LQRSP) with a variety range of (0.05, 44.58, and 49.84) and Linear Quadratic Regulator (LQR) ( = 0) along with other supporting methods; Controllability Gramian and Network Theory (graph analysis). The finding in this research shows that bacteria species Bacteroides hydrogenotrophica, Bacteroides uniformis, Bacteroides vulgaris, Bacteroides thetaiotaomicron, Escherichia lenta, and Dorea formicigenerans have an important role for preventing and medicating a variety of gut-related diseases. This conclusion is reinforced by the analysis conducted using the Controllability Gramian, displaying five of the chosen bacteria with the highest controllability index, which demonstrates that the system can be effectively controlled. This finding suggests a potential for enhancing therapeutic strategies, rendering them more precise and systematic. To gain deeper insights into the relationship between each bacteria and the rationale behind the selection of these bacteria by LQRSP, this study also employs network theory, which successfully elucidates the choice of Bacteroides uniformis despite its low controllability index. Additionally, to further validate the efficacy of these bacteria, the research develops a simulation that compares the controlled system with the uncontrolled system, utilizing two types of disturbances. The results indicate a significant difference in robustness against disturbances between the controlled and uncontrolled systems. The findings from this research can be used as a foundation for a more efficient and systematic intervention strategy findings. By researching gut microbiome composition regulation using a mathematical approach, it opens new opportunities for new method discoveries aiming to increase the health of the gut microbiome which is beneficial for the medical field and prevention of gut related diseases.
The conspiracy mentality: its relationship with absurdity and ostracism
Conspiracy theories are generally perceived as irrational, absurd and as having a negative effect on our reputation. Yet some people do not see them as such. This may lead us to wonder why and how an individual would come to believe or support such statements. In this work, the primary goal is to obtain the level of absurdity of various conspiracy theories so that they can be used in experiments designed to test Williams' “Strategic Absurdity Hypothesis”. In addition, this study attempts to demonstrate the link between conspiracy mentality and feelings of ostracism. In this research, I analyzed a group of 47 participants recruited via social networks in May 2023. The survey collected their demographic information, their conspiracy mentality, their feeling of ostracism, their knowledge of conspiracy theories and their perception of absurdity toward them. The results were analyzed using correlations and linear regressions. The results show a negative correlation between conspiracy mentality and the perception of absurdity for most theories. In other words, the higher a participant's conspiracy mentality, the less absurd the theory is perceived to be. Therefore, hypothesis (I) is partially supported. On the other hand, hypothesis (II), which says that ostracism predicts conspiracy mentality, is not supported by the results. These results are in line with Williams' “Strategic Absurdity Hypothesis” and Sterelny's signaling theory, explaining that an individual, by expressing agreement with a conspiracy theory typically perceived as absurd, damages their reputation in the eyes of others to show that they belong to the group. However, for the theories relating to COVID-19 and climate change, the conspiracy mentality does not predict the vision of absurdity, suggesting that their currentness and media coverage influence whether they are used as signals. The literature does not fully agree with our results and still presents very divergent opinions regarding the links between feelings of ostracism and conspiracy mentality. Indeed, it remains difficult to determine whether conspiracy mentality influences ostracism or vice versa. In conclusion, this study provides new ideas for future research on the origins and impact of the conspiracy theories.
Autonomous Ecosystem Surveillance Vehicle
As of 2021, there are 368 harmful algae blooms and over 6000 invasive species in the United States of America. Furthermore, it is reported that the United States spends more than 11.1 billion dollars per year on clean-up methods for marine debris. However, there currently isn’t a method to monitor aquatic problems simultaneously, autonomously, and efficiently, creating a capability in the aquatic biosecurity sector. To combat this, we have created an autonomous vehicle that can conduct long-term monitoring of freshwater bodies for up to 60 hours.
Revolutionizing Metabolic Health: The Therapeutic Potential of Next-Generation Probiotic Akkermansia Strains (Z62, IR119) for Metabolic Syndromes
The human gut microbiome is integral to digestion, overall health, and metabolic disorder imbalances. Recent advancements in fecal microbiota transplantation (FMT) have highlighted the therapeutic promise of restoring healthy gut microbiota in populations with high incidences of diseases. Focusing on fecal DNA samples from healthy Asian individuals, this study examines the potential of novel Akkermansia strains, specifically Akkermansia muciniphila (Z62) and Akkermansia massiliensis (IR119), as next-generation probiotics for mitigating metabolic syndrome. A key aspect of the study is the investigation of short-chain fatty acids (SCFAs), which are produced and play a crucial role in regulating metabolic processes. SCFAs such as butyrate, acetate, and propionate are essential for energy provision to colon cells and exerting anti-inflammatory effects. The methodology involves selecting two Akkermansia strains, analyzing them through 16S rRNA and WGS, evaluating their growth and survival rates under acidic and bile-salt conditions, alongside their cell adhesion capabilities. The study focuses on the production of key short-chain fatty acids (SCFAs) and tryptophan derivatives by bacteria in regulating metabolic processes, as well as their anti-inflammatory effects on colon cells. Through in vitro assays, both strains exhibited survival in acidic/bile-rich conditions, though Z62 demonstrated superior adhesion to Caco-2 cells, suggesting a higher colonization potential. Metabolomic analysis revealed both strains produce SCFAs, including propionic and acetic acids, and indole metabolites, such as indole-3-propionic acid and indole-3-acetic acid, which are known to influence lipid metabolism and insulin sensitivity. In adipocyte cell models, IR119 significantly reduced lipid accumulation, while Z62 increased lipid presence. Furthermore, IR119 reduced pro-inflammatory cytokine levels, including IL-6 and TNF-α, suggesting potential for inflammation mitigation. The future potential of IR119 as a therapeutic probiotic is extraordinary in addressing complex metabolic and inflammatory diseases, which open new avenues for managing chronic inflammatory conditions like type 2 diabetes and cardiovascular disease. Future clinical trials could refine IR119’s efficacy, positioning it as a leading probiotic in preventive and therapeutic contexts.