全國中小學科展

三等獎

圖論演算法學習用之繪圖程式

本研究針對學習圖論演算法的需求,設計一套使用者友善的繪圖軟體Graphene。Graphene繪圖程式除了提供高可讀性的繪製結果,作為輔助繪圖的工具外,也可直接輸入競賽題目的文字格式測試資料產生繪圖結果,並結合現有繪圖演算法,改善、優化樹與類樹圖的繪製結果。此外,也加入時間軸、自訂外觀、參數調整、匯出圖片等功能,幫助學習者理解圖論演算法,亦可幫助教師製作教材,有助於圖論演算法教學。 Graphene採用的繪圖演算法以force-directed graph drawing演算法為基礎,實作節點的分布。然而初始的節點分布會影響繪圖結果,因此我們利用biconnected component、block-cut tree等圖論結構對圖的繪製進行優化。首先找出圖的biconnected component及關節點,重新定義block-cut tree裡的block,接著利用radial tree的布局方式配置每個block,再套用force-directed graph drawing演算法,得到最後的布局結果。如此可以減少不同block之間的交錯,得到較佳的結果。

纖維素內切酶GsCelA自我斷裂之探討

生質能源製程中,常將植物細胞壁中的纖維素進行水解,此反應在高溫環境中進行較具商業優勢,故開發耐高溫的纖維素酶具重要性。發現自嗜熱菌Geobacillus sp. 70PC53的纖維素內切酶GsCelA 在高溫中具高活性。初步研究發現 GsCelA 蛋白質序列 N 端後第 315 和第 316 個胺基酸間會發生自我斷裂現象,導致酵素活性及熱穩定性提升。本實驗在 GsCelA 的 N 端及 C 端分別製造定點突變,探討 GsCelA 自我斷裂性質。實驗結果顯示突變GsCelA 自我斷裂速率較低,而 EDTA 可抑制自我斷裂現象;已斷裂 GsCelA 可催化自我斷裂發生,而 N 端突變之已斷裂 GsCelA 不具此性質。整體實驗結果顯示GsCelA 自我斷裂受已斷裂GsCelA 催化且為一正回饋機制,並且本次的N端突變區段在催化GsCelA自我斷裂作用上是必要的。

提升戶外物件辨識模型表現之研究

近年來由於電腦視覺的蓬勃發展,物件辨識模型被廣泛運用在生活中,例如自動駕駛、醫療影像、農作物檢測等等。對於要在戶外運作的模型,由於檢測物體的背景會隨著時間、地點、季節、光照強弱等因素不斷改變,通常需要大量且多元的資料才能避免模型過擬和,然而取得多元的資料需要花費大量的人力與時間在收集以及為這些新資料標籤。 本研究利用影像風格轉換模型作為資料增強的方法,將於晴天拍攝的街景圖轉成夜晚及雨天,使原本只有晴天的資料集有更多元的資料。結果證實使用風格轉換模型生成的影像訓練的物件辨識模型的準確率在某些情況下有顯著的提升。此方法的優點在於能夠快速產生多樣風格的資料,由於是對影像的風格做轉換,影像的內容沒有改變,因此能夠沿用原有的標籤,同時節省了蒐集及為新影像標籤的人力及時間。

Optimization of honey production by monitoring the behavior of bees based on studying their sounds

This is a first approach in the development of beekeeping and the preserving of bees, a crucial and important species in the balance of ecology on our planet. This project consists in designing and building a small affordable device that will help beekeepers keep an eye on their hives and prevent theft whenever and wherever they are by providing them with instant and continuous data and information about their beehive status through a mobile application. This IOT approach will rely on many physical variables especially the sound frequency of the bee buzz, which appears to be a way for the bees to communicate with each other in special circumstances. That is why; we aimed to analyze the sound frequencies of the bee buzz to detect beehive behavioral changes. Many other factors are also important for the keeping of a healthy beehive such us temperature, humidity, weight and fly activity. And as for security measures we are going to add a GPS tracker to the system to keep track of the hives and alert the beekeeper if there is any kind of danger. The development of this real time beehive monitoring system will not only help the beekeeper keep track of his hive and collect useful data but also increase the honey production and avoid many colony losses and thus preserve the bees and ensure their well-being.

車用開門快速預警裝置

由於台灣汽、機車數量逐年攀升,且人口密度高、道路窄小和停車位不足,使得人、車爭道和兩車併排等現象層出不窮,導致汽車駕駛人或乘客在開啟車門時,未注意後方來車造成碰撞的傷亡事故屢屢發生。有鑑於開啟車門不當事故頻繁,本研究提出一個基於達靈頓電路(Darlington Circuit)的快速且成本低之車門開啟預警系統,當汽車駕駛人或乘客碰觸車門內把手內側的軟式觸控薄膜開關時,系統即會啟動欲開啟車門側的門外警示燈和車後方向燈光閃爍,以提早預警行人或機車騎士,同時,汽車A柱內的警示燈、蜂鳴器會同步閃爍和鳴響,以提醒汽車駕駛人或乘客注意後方車輛避免碰撞,保障用路人安全。

Art Recovery through PConv (Partial Convolutions) and GLCIC (Globally and Locally Consistent Image Completion)

在生成性模型(Generative Models)中的一個主要應用就是“影像修復” (Image Inpainting) 也稱為“影像完成”(Image completion)。 影像修復經常被應用於許多影像處理,包含在生活照片中移除背景不必要的物件再回填移除後缺損的影像。 但是,或許之前的研究較多著墨於技術而非美學,至目前為止,很少有影像修復的研究著重於藝術作品的重建應用。 所以,本研究計畫提出三個新的模型來針對藝術作品做更優化的影像修復,以達到較一般處理日常照片所使用的如Places2 和ImageNet等影像修復技術在視覺上更為自然逼真的處理: 第一種模型是PConv (Partial Convolutions),它利用部分旋積(partial convolution) 來避免一般由於遮蔽區域中畫素起始值設定而常見的影像模糊問題。 第二種模型是GLCIC (Globally and Locally Consistent Image Completion),是一種以GAN (Generative Adversarial Network) 為基礎,進一步在全域鑑別器 (global discriminator) 之上,再建構一個區域性鑑別器(local discriminator),以確保在整體畫面與細部畫面的合理與一致性的方法。 最後一個模型是一個在本研究中所提出的全新、整合性的模型–PConv-GAN。 在這個創新的模型中,我們將GLCIC模型中常用於旋積過程中”補零”(zero padding) 的手法,以PConv模型中部分旋積的方式來取代。最後我們會利用一系列的印象派畫作為例,以L1 loss 和PSNR (peak signal-to-noise ratio) 兩種方法來評估這三個模型。

廢油回收新解方-探討廢油再製燃料

本研究討論以酒精、沙拉油、飽和醋酸鈣溶液,尋找最佳酒精凝膠的穩定度,增加凝膠穩定度方法:(1)密閉系統,(2)飽和醋酸鈣溶液:酒精以1:5的比例,(3)添加沙拉油時,穩定度會下降,但添加使用過的廢油時,穩定度會增加。 沙拉油或回收廢油皆無法直接點燃做為燃料,但若溶入酒精凝膠中,則可製成再生固體燃料,本研究結論:回收廢油10克、酒精10 mL、飽和醋酸鈣溶液2 mL,於室溫經簡單混合,就可製得燃燒效能與市售酒精塊相仿、大於200 cal/ g的自製固體燃料;若是成分較簡單的回收廢油,除酒精及飽和醋酸溶液,若再添加適量硬脂酸亦可製得固體燃料。本研究讓「回收廢油」產生新的再利用的機會,對環境、綠能有所貢獻。

DEVELOPMENT OF PAPER-BASED ORIGAMI BIOSENSOR PLATFORMS FOR COLORIMETRIC DETECTION OF BIOCONTAMINANTS

Infectious diseases caused by bacteria from biological pollutants pose a great burden in terms of diagnosis and treatment, and millions of people worldwide die from bacterial infections. Detection of bacteria plays a critical role in clinical diagnosis and control of contamination, but is not accessible due to the high cost, complex devices and equipment required. In the project, an alternative to existing methods, a paper-based biosensor for the detection of model organism E. coli bacteria, which is visible, low cost, easy to use, can be integrated with a smartphone, is based on rapid color change in the exposed environments, drinking and pool water, wastewater, beverage products. platforms were developed. For the specific detection of E.coli bacteria, two different biosensors have been developed that can perform colorimetric detection in a user-friendly origami design, minimizing microchip and processing steps based on antibody-bound PVDF membrane and filter paper-based immunological method. In the presence and absence of target bacteria E.coli, the lowest detection limit of the biosensors obtained by using paper-based platforms that create a distinctive color on them, depending on the concentration, was 0.9x103 bacteria/ml for origami biosensor, 2.7x103 bacteria/ml for microchip biosensor and the widest dynamic linear operating range was calculated as 103-107 bacteria/ml. With the biosensor platforms we have developed, the use of only one smartphone for both qualitative and quantitative, visible results and analysis within minutes constitutes the originality of our project. With these promising results, the biosensors we have developed can also be used for the detection of different biological pollutants, do not contain complex devices and can be easily produced in large scales. We believe that the biosensors we have developed for the detection of biological pollutants in water and beverages, especially in regions where test laboratory infrastructure is not available, will contribute to the literature, public health, health economy and sustainable development goals such as clean water and sanitation, health and quality life, and life in water.

Forming Polygons with Broken Pick-up Chocolate Bars and Spaghetti Noodles

”The broken pick-up sticks problem” is proposed by T. Kyle Petersen and Bridget Eileen Tenner in 2020. We solve the problem by considering the discrete version using random variables, and the limit behaviour of the discrete version gives us a combinatorial solution to the original problem. We also evaluate the probabilities of the triangles formed by the broken/pick-up sticks satisfying some specific geometric conditions with various techniques, including calculus and elementary number theory.

改良型非整數次方PID控制器設計

傳統控制器都以一次方線性模式調整系統的比例、積分、微分等三參數減少誤差。為發展更佳誤差控制模式, 本研究嘗試加入誤差變數的次方運算。我們先以程式模擬一受固定阻力的線性系統,測試誤差變數次方的可行性,利用倒立擺系統進行模擬,並使倒立擺追蹤正弦波,以印證次方模式的控制效果。 經程式模擬後,我們認為不論目標值的大小,修改誤差參數的次方模式皆可使系統響應更快,控制效果更好。後續將利用倒立擺實測確認調整誤差次方可行性,並調整倒立擺的質量分布來模擬不同情況。相較於傳統的PID控制器,本研究拓增比例參數次方,建立PID三參數的次方模式,確認具更佳控制效果的可能性。希望未來可持續強化模式,將同步PID各參數次方模式,實際應用在機器手臂、溫度控制、建築防震等工程與工業。