隱密的發育調節中樞-植物轉錄因子BPC對發育之調控機制 A cryptic hub for development control: Unraveling the regulatory role of plant transcription factor class I BASIC PENTACYSTEINEs in Arabidopsis development
GAGA 序列為生物發育重要順式作用子; BPC (BASIC PENTACYSTEINE) 則為植物特有 GAGA 結合蛋白。已知 bpc 突變體具多效性,其生理時鐘相關之發育有多重缺陷。阿拉伯芥BPC家族中 BPC1, BPC2, BPC3 為第一亞群,且 BPC 群間和群內有重疊與拮抗作用。為探究第一群 BPC 是否調控生理時鐘,本實驗以 3D 影像觀察 bpc1 bpc2、bpc1 bpc2 bpc3 及野生型之晝夜運動,並誘導 BPC 過量表現以檢測時鐘基因反應,發現 bpc 突變體之晝夜運動與時鐘節律皆有缺陷,顯示 BPC 能影響生理時鐘運行。透過一系列對第一群 BPC 突變體與過量表現植株的 RT-qPCR 檢測,可歸結第一群 BPC 是能調控生理時鐘與葉片生長的中心。
Reduction of traffic congestion in España Boulevard using graph theory
There have been numerous studies exploring the applications of graph theory in traffic management, often finding ways to reduce traffic congestion and make traveling more efficient. Such studies will be beneficial when applied to heavily congested areas such as España Boulevard, one of the busiest thoroughfares in Manila. This paper aimed tooptimize the road map of España Boulevard using graph theory. The current road map of España Boulevard was represented as a directed graphand subjected to the mutation method of edge removal, wherein an edge isremoved in each mutation based on a computed fitness function, F(G),which depicts better efficiency at lower values. Edges were removed until the graph got disconnected, which was tested using the Floyd-Warshall algorithm. The 28th mutation resulted in a minimum F(G) value of 144.4; this is a 50.18% decrease from the F(G) of the original graph, which is 290. After the 28th mutation, the removals resulted in an increase in the F(G). As a result, the final mutation resulted in an F(G) of 311.89, which characterized a less efficient graph. This study was able to apply graph theory concepts to optimize the España Boulevard road map using the mutation method, minimizing its F(G) by at most 50.18%. For future studies, the practicality of the alternate road map may be tested in simulations to examine its efficiency when other factors, such as traffic volume, are introduced.