全國中小學科展

三等獎

「醛」面啟動-探討肉桂醛提升綠豆耐鹽能力之機制

濃厚氣味的中藥,吃了能讓人強健體魄,那植物服用後呢?研究發現,綠豆能感受肉桂粉中的氣味分子”肉桂醛”,並透過改變其生理與生長的發育來減緩其在鹽逆境下細胞死亡的程度,提高長期耐鹽能力。本研究顯示,熏完肉桂醛的綠豆能透過減少氣孔數、使澱粉代謝、增加根系來應對鹽逆境下的缺水問題,在生化研究方面,能透過在根部提前累積脯胺酸來應對滲透壓逆境。此外肉桂醛氣味能激發綠豆的抗氧化力,我們發現,肉桂醛能讓綠豆提前累積抗氧化物(脯胺酸、抗壞血酸),另能提高抗氧化酵素活性(POD、APX)來應對鹽逆境下的氧化傷害。本研究發現綠豆能感受肉桂醛氣味並提升其長期耐鹽能力,期待未來能將研究成果用於農業,減少逆境對農業帶來的損失。

Limited Query Black-box Adversarial Attacks in the Real World

We study the creation of physical adversarial examples, which are robust to real-world transformations, using a limited number of queries to the target black-box neural networks. We observe that robust models tend to be especially susceptible to foreground manipulations, which motivates our novel Foreground attack. We demonstrate that gradient priors are a useful signal for black-box attacks and therefore introduce an improved version of the popular SimBA. We also propose an algorithm for transferable attacks that selects the most similar surrogates to the target model. Our black-box attacks outperform state-of-the-art approaches they are based on and support our belief that the concept of model similarity could be leveraged to build strong attacks in a limited-information setting.

高鐵行經嘉南地區之高鐵低頻震動波

當高鐵行經地層下陷明顯區域、或土壤液化中高潛勢的沖積層時,行車的車身震動會更劇烈嗎?本研究基於這樣的動機,經由測量高鐵沿線不同區段的震動訊號,了解各段的震動特徵。 本次研究使用微機電加速計(MEMS sensor)來量測高鐵行經左營至台北路線上車廂內之震動,並利用QCN Live軟體分析波形,分析行經各站間之頻率與振幅特徵,結果發現,行經台南到嘉義、嘉義至雲林、雲林至彰化三段路線的震動,在濾波0.5-4.0 Hz之平均振幅大於其他非地層下陷與土壤液化地段,同時我們也發現低頻振動的最大振幅在列車行經土壤液化區時有顯著的增加。

四眼渦漩-混沌電路之密鑰生成器

本專題利用混沌電路本身的不可預測性及混亂程度,製造出作為硬體安全實現的密鑰生成器。從實現基本的蔡氏電路,並探討蔡氏電路作為硬體安全的相關應用為基礎,進而實現進階的研究改造。透過電阻、電感、電容、運算放大器等電子元件,焊接在電路板上,實現一個「四渦漩狀」的混沌電路。 本研究的最大特點,就是會製作兩個具備相同電子元件及構型的多吸引子混沌電路,但天生的元件變異性會產生「類蝴蝶效應」,再利用數位乘法器,將兩個電路之類比訊號相乘,而這個操作會形成一個密鑰生成器的混沌系統。 最後會透過軟體MATLAB 確認電路操作和分析電路輸出信號,及所提出密鑰生成器的安全程度,將會驗證隨機性和獨特性這兩組特徵,分別計算平均及交叉相關函數來做為驗證的依據。最後從實驗中證明了「四渦漩狀」的混沌電路所產生的密鑰具有快速產生及高安全性。

Expectations for extension of cell life and next generation anticancer drugs by using secondary metabolites of actinomycetes

Inhibitory effects of the secondary metabolite of actinomycete were examined on cell cycle of the yeasts of S. pombe and S. cerevisiae. The secondary metabolite was obtained from cultivation of the actinomycete isolated from the soil of Owakudani in Hakone, Japan. The fifth fraction of the secondary metabolite by ODS column separation (HK-T5), which was soluble to pure methanol, was used in the present experiments. The HK-T5 brought about the delay of forming colonies of S. pombe for about 11 days compared to that cultivated without the HK-T5. The delay of the colony formation was longer for the S. pombe cultivated with more amount of the HK-T5. The cultivation with HK-T5 also brought about the extension of the lifespan of the S. pombe for more than 10 weeks in a liquidus medium. The cell life recovered the ordinary manner by removal of the HK-T5, meaning that the activities of the HK-T5 is reversible. These facts confirm the suppression of cell cycle, and the delay of cell growth by the HK-T5. These phenomena were similarly observed for S. cerevisiae. Comparison of the action of HK-T5 with hydroxyurea, which is an anticancer drug inhibiting the cell cycle at S phase, clarified that the inhibitory action of HK-T5 worked at the phase earlier than S phase. The combined effects of HK-T5 on the cell cycle were evaluated with triamcinolone acetonide (TA), or aspirin, the former of which is a drug synchronizing cancer cells in S phase, and the latter keeping human cells in G1/G0 phases. The combined use of HK-T5 with TA synchronized the cells at the phase slightly proceeding from G1 to S phase without toxicity. On the other hand, the combined use with aspirin made the inhibitory effect of HK-T5 inactive. Hence, the HK-T5 is attractive as a drug for the extension of cell lifespan, and anticancer therapy.

Expectations for extension of cell life and next generation anticancer drugs by using secondary metabolites of actinomycetes

Inhibitory effects of the secondary metabolite of actinomycete were examined on cell cycle of the yeasts of S. pombe and S. cerevisiae. The secondary metabolite was obtained from cultivation of the actinomycete isolated from the soil of Owakudani in Hakone, Japan. The fifth fraction of the secondary metabolite by ODS column separation (HK-T5), which was soluble to pure methanol, was used in the present experiments. The HK-T5 brought about the delay of forming colonies of S. pombe for about 11 days compared to that cultivated without the HK-T5. The delay of the colony formation was longer for the S. pombe cultivated with more amount of the HK-T5. The cultivation with HK-T5 also brought about the extension of the lifespan of the S. pombe for more than 10 weeks in a liquidus medium. The cell life recovered the ordinary manner by removal of the HK-T5, meaning that the activities of the HK-T5 is reversible. These facts confirm the suppression of cell cycle, and the delay of cell growth by the HK-T5. These phenomena were similarly observed for S. cerevisiae. Comparison of the action of HK-T5 with hydroxyurea, which is an anticancer drug inhibiting the cell cycle at S phase, clarified that the inhibitory action of HK-T5 worked at the phase earlier than S phase. The combined effects of HK-T5 on the cell cycle were evaluated with triamcinolone acetonide (TA), or aspirin, the former of which is a drug synchronizing cancer cells in S phase, and the latter keeping human cells in G1/G0 phases. The combined use of HK-T5 with TA synchronized the cells at the phase slightly proceeding from G1 to S phase without toxicity. On the other hand, the combined use with aspirin made the inhibitory effect of HK-T5 inactive. Hence, the HK-T5 is attractive as a drug for the extension of cell lifespan, and anticancer therapy.

水熊蟲於化學環境壓力耐受機制探討Tolerance mechanisms of Tardigrade under chemical environmental stresses

常見模式生物檢測化學環境壓力後無法重複使用。本研究探討對環境變化敏感的大生熊蟲抗化學環境壓力機制,評估其作為重複使用模式生物可行性。得知多數大生熊蟲於硝酸鹽、酸鹼值改變與殺蟲劑環境壓力下仍能活動或隱生。以亞甲藍簡易染色可確認化學環境壓力下大生熊蟲是否受傷害,如體表角質層被破壞會導致完全染色。分析大生熊蟲於常見硝酸鹽環境壓力下體內脂質含量、總蛋白質單體表現量與總抗氧化能力,推測出大生熊蟲對抗硝酸鹽環境壓力機制:1.藉由> 20 kDa持續性活化蛋白抗硝酸鹽環境壓力。2.活動大生熊蟲增加體內脂質含量隔絕環境硝酸鹽。3.隱生大生熊蟲以抗氧化系統降低硝酸鹽產生的氧化壓力傷害。以上結果得知大生熊蟲具潛能檢測常見化學環境壓力並作為重複檢測之模式生物。未來將持續評估大生熊蟲可檢測的化學環境壓力並為人類健康把關。

PVA unveiled the actual role of starch in the Briggs-Rauscher reaction

The Briggs Rauscher reaction (BR reaction) is one of the famous oscillating reactions; the aqueous mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch exhibit color change between yellow and blue-purple repeatedly. The blue-purple color formation is due to the iodine test reaction caused by inclusions of polyiodides such as I3- and I5- in the helical structure of starch. Therefore, starch has been regarded as only an indicator in the BR reaction. But our seniors have found that the oscillation did not last without starch. They hypothesized that starch’s linear helical framework is necessary to elongate the lifetime of the oscillating reaction. If this hypothesis is correct, similar BR-type oscillations must be observed when other polymers with helical structures are used instead of starch. We found the literature which reports that polyvinyl alcohol (PVA) forms a helical structure and indicates the iodine test reaction. In our research, we studied the BR reactions using PVA, with different saponification degrees and viscosities. First, we studied the correlation between the structural features of PVA and the iodine color reaction by spectroscopic approach, exhibiting that PVA with low saponification form helical structures and show the iodine color reactions, which gives red color solutions. Second, we found that additions of the helical-structured PVA to the reaction solution instead of starch induces the BR-type oscillating reactions, while PVA without helical structure induces only a few numbers of oscillations. This is the world-first example of the oscillating reaction using PVA. The oscillation that lasted for 6 minutes with 23 oscillations was almost the same as that of the general BR reaction using starch. We concluded that the polymers with helical structures are intrinsic to elongate the lifetime of the BR reaction. Furthermore, we found that the addition of K3[Fe(CN)6], which has a high redox activity, in the reaction solution with PVA drastically elongated the lifetime (50 min) and increased the numbers of the oscillations (nearly 100 times). This result suggests that the oxidation-reduction reactions by the ferricyanide ion promotes the redox process of iodine and iodide ions.

探討果蠅腦部神經突導向的基因調控

本研究利用RNA干擾與基因過度表現兩種方法,觀察基因表現對果蠅蕈狀體神經突導向的影響。我們以RNA干擾方式降低基因表現,標定dally、octβ2r、sifr與frazzled基因;而基因過度表現則選定frazzled基因。利用果蠅GAL4-UAS系統使神經細胞表現的綠色螢光蛋白,觀察神經突導向情形。由干擾果蠅腦部蕈狀體PPL1-α′2α2神經細胞上述基因,觀察到dally、octβ2r基因在降低表現後,此細胞分別呈現失去神經支配與異常神經支配。sifr基因在兩種不同RNA干擾序列下,表現出不同之結果,一是和wild type的神經突型態相似、另一則是失去神經支配。frazzled基因干擾後,細胞在蕈狀體α2區失去神經支配。frazzled基因在過度表現下,神經突和wild type相比,出現異常導向。綜言之,由我們研究發現透過操控基因表現,果蠅腦部神經突會產生異常的導向與神經支配,顯示果蠅腦部神經系統在分化或發育上,基因扮演極為重要的角色。

以分子動力學模擬探討有機分子影響胰島類澱粉蛋白(IAPP)的聚集行為

近年來的研究指出:第二型糖尿病病徵與胰島類澱粉蛋白(islet amyloid polypeptide,簡稱IAPP)之聚集有關。如欲探討IAPP聚集機制以治療病症,需經多樣、多元的實驗條件進行試驗,這無疑是件耗時、耗費資源的大工程!本研究是以電腦軟體進行理論計算分析,採用分子動力學模擬系統,探討不同種類或官能基的有機分子對於IAPP作用之影響,再進一步觀察分子動態、統計系統能量,歸納出分子間的交互作用,釐清可能影響實驗結果的重要變因,期能達到提昇實驗設計、減少耗材浪費的綠色化學願景。本研究結果發現:在純水或稀薄食鹽水中,IAPP構形皆傾向摺疊結構;且具較高極性基團或易產生立障效應的有機分子會拉伸IAPP結構,使其分子間相互靠近聚集,形成β-sheet纖維;具較低極性基團的有機分子,易進入IAPP turn內,破壞引發聚集現象的疏水核心,進而抑制IAPP分子的積聚。