Fabrication of Tandem Dye-Sensitized Solar Cells to Enhance Photovoltaic Performance
Energy has had an enormous impact on the development of technology and is a main factor in humans’ advancement towards an evolved society. Nevertheless, nonrenewable energy resources – which are the most effective in everyday application - have led to changes in the climate, environment, human health, and the world in general [1], which has encouraged researchers to switch to the use of renewable energy sources. Solar Cells are one of the most effective resources that rely on renewable energy. They come in a variety of types, operation methods, and efficiency as shown in Figure 1, including Dye-Sensitized Solar Cells (DSSC), which, inspired by photosynthesis in plants, uses photo-sensitive dye to capture sunlight and generate electricity. DSSCs were proved to have generated a great deal of interest and are one of the most promising solar cells among third-generation PV technologies, due to their low cost, simple preparation, good performance, and environmental friendliness compared to conventional photovoltaic devices [3]. However, their efficiency is quite insufficient for everyday use. Previous studies proved that Tandem DSSCs – which are two dye-sensitized cells stacked on top of each other – are able to enhance cell performance. The light absorption range of a tandem cell is increased because the bottom cell behind the top one absorbs and uses the incident light that was not absorbed by it [4]. It operates as shown in Figure 2, where the light photons excite the electrons of the dye molecules. The electrons are then transported to the FTO (conductive glass) by the semiconductor, which is used in the figure as TiO2 nanoparticles. The electrons pass through the circuit to perform the work, then move to the counter electrode (shown as Platinum). They are then transported by the electrolyte (I-/I3-) back to the dye molecules, and the process is repeated.