SUSTUNI - SOFTWARE FOR SMART AND SUSTAINABLE DESIGN OF INDUSTRIAL ELECTRICAL CIRCUITS
The theme of this project is to develop software to facilitate and innovate the design of low-voltage industrial electrical circuits. The goal is to develop a program that makes projects more efficient in terms of time, accuracy, and sustainability, automating dimensions such as calculating conductor cross-sections, protections, single-line diagrams, and analyzing with AI at which points industrial electrical circuits can be more sustainable. The 2023 Electric Energy Yearbook of the Energy Research Company describes that electricity consumption increases 2% per year in Brazil, and industrial installations represent the largest part of the national electrical sector (36.2%). As stated in standard NBR 5410/2004, when developing an installation project, an electrical professional works with several processes, depending on several criteria and calculations to present a reliable electrical installation. Minimal errors in calculations can cause damage to equipment, conductors, and individuals present in the installation. Using software to model these circuits optimizes time and brings more confidence to the project. This work aims to differentiate itself in this field by filling in the gaps in existing solutions for the industry, providing support for Brazilian standards, automatically generating single-line diagrams and presenting suggestions for sustainability in the circuits. The program is developed in Python, based on NBR 5410/2004 and engineering works. The software developed allows the user to size different distribution boards, motors and circuits, calculating the cross-section of the conductors/electrical protections, a particular transformer, and generating a single-line diagram in CAD. The program also presents suggestions aimed at sustainability to reduce material/energy costs. Tests were carried out with electrical engineering companies and students in the technical area, where the software presented high precision and very positive feedback from the interviewees, and it can be said that the work achieved its objectives.
Fabrication of Tandem Dye-Sensitized Solar Cells to Enhance Photovoltaic Performance
Energy has had an enormous impact on the development of technology and is a main factor in humans’ advancement towards an evolved society. Nevertheless, nonrenewable energy resources – which are the most effective in everyday application - have led to changes in the climate, environment, human health, and the world in general [1], which has encouraged researchers to switch to the use of renewable energy sources. Solar Cells are one of the most effective resources that rely on renewable energy. They come in a variety of types, operation methods, and efficiency as shown in Figure 1, including Dye-Sensitized Solar Cells (DSSC), which, inspired by photosynthesis in plants, uses photo-sensitive dye to capture sunlight and generate electricity. DSSCs were proved to have generated a great deal of interest and are one of the most promising solar cells among third-generation PV technologies, due to their low cost, simple preparation, good performance, and environmental friendliness compared to conventional photovoltaic devices [3]. However, their efficiency is quite insufficient for everyday use. Previous studies proved that Tandem DSSCs – which are two dye-sensitized cells stacked on top of each other – are able to enhance cell performance. The light absorption range of a tandem cell is increased because the bottom cell behind the top one absorbs and uses the incident light that was not absorbed by it [4]. It operates as shown in Figure 2, where the light photons excite the electrons of the dye molecules. The electrons are then transported to the FTO (conductive glass) by the semiconductor, which is used in the figure as TiO2 nanoparticles. The electrons pass through the circuit to perform the work, then move to the counter electrode (shown as Platinum). They are then transported by the electrolyte (I-/I3-) back to the dye molecules, and the process is repeated.